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Abstract

By using the bifurcation theory of dynamical systems to a generalized KdV equation given by Cooper et al., the exis-
tence of solitary wave solutions, solitary cusp wave solutions and uncountably infinite many smooth and non-smooth peri-
odic wave solutions is obtained. Under different parametric conditions, various sufficient conditions to guarantee the
existence of the above solutions are given. Some exact explicit parametric representations of the above waves are
determined.
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1. Introduction

In 1993, Cooper et al. [2] considered the following generalized KdV equation:
K (1,p) s uy = ut'™ + o 2uett? + 4pu? ™ s + p(p — 1)~ ()], (L.1)
where p,l > 2, I,p € Z". This equation was derived from the Lagrangian

(1=1)

where u(x,t) was defined by u(x, f) = y.(x, ). The authors of [2] investigated the Hamiltonian structure and
integrability properties for this class of KdV equation. It is very important to consider the dynamical bifur-
cation behavior for the travelling wave solutions of (1.1). In this paper, we shall study all travelling wave solu-
tions in the parameter space of this system. Let u(x,t) = ¢(x — ct) = ¢(&), where ¢ is the wave speed. Then
(1.1) becomes

wip= [ waw,—,wf")+a<wx>f”<wm>2 d, (122)
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—cd = m(qﬁl Y +a2(¢70") + p(¢7 T (¢))), (1.2b)
where ““/”” is the derivative with respect to &. Integrating (1.2b) once and setting two integration constants as g,
we have

" — ! 1 —

2adP P + apd? 1(¢)2+m¢’ "Yep+g=0. (1.3)

Eq. (1.3) is equivalent to the two-dimensional systems as follows for g = 0:
2.2 1 g2

do_, L @y e te (1.4a)

dé dé 200"
and for g # 0,

p—1.2 | 1 i1

@:y’ dy " v A5 teptg (1.4b)

dé dé 2ag”
with the first integral

1
_ 2 1, _
H($,y) = ad’y +l(l_1)¢> +t5ed” +gh=h. (1.5)

System (1.4b) is a 5-parameter planar dynamical system depending on the parameter group (/,p,«,c,g). For
different /, p and a fixed o, we shall investigate the bifurcations of phase portraits of (1.4b) in the phase plane
(¢, ) as the parameters ¢, g are changed. Here we are considering a physical model where only bounded trav-
elling waves are meaningful. So we only pay attention to the bounded solutions of (1.4b).

Suppose that ¢(£) is a continuous solution of (1.4b) for & € (—oo,00) and lims (&) = a, lims_,_ ¢
(&) = b. Recall that (i) ¢(x,?) is called a solitary wave solution if @ = b; (ii) ¢(x, 1) is called a kink or anti-kink
solution if @ # b. Usually, a solitary wave solution of (1.1) corresponds to a homoclinic orbit of (1.4b); a kink
(or anti-kink) wave solution (1.1) corresponds to a heteroclinic orbit (or the so-called connecting orbit) of
(1.4b). Similarly, a periodic orbit of (1.4b) corresponds to a periodically travelling wave solution of (1.1).
Thus, to investigate all possible bifurcations of solitary waves and periodic waves of (1.1), we need to find
all periodic annuli and homoclinic orbits of (1.4b), which depend on the system parameters. The bifurcation
theory of dynamical systems (see [1,3]) plays an important role in our study.

We notice that the right hand of the second equation in (1.4b) is not continuous when ¢ = 0. In other
words, on the above straight line of the phase plane (¢,y), ¢? has no definition. It implies that the smooth
system (1.1) sometimes has non-smooth travelling wave solutions. This phenomenon has been studied by some
authors (see [3,4]). we claim that the existence of a singular straight line for a travelling wave equation is the
original reason why travelling waves lose their smoothness.

The paper is organized as follows. In Section 2, we discuss bifurcations of phase portraits of (1.4b). In Sec-
tion 3, some explicit parametric representations of travelling wave solutions are given. In Section 4, the exis-
tence of smooth solitary wave solutions and uncountable infinite many non-smooth periodic wave solutions of
(1.1) is discussed.

2. Bifurcations of phase portraits of (1.4b)

In this section, we study all possible periodic annuluses defined by the vector fields of (1.4b) when the
parameters ¢, g are varied. Throughout we assume that o > 0. Otherwise, we can make a transformation to
reduce (1.4b) to this case.

Let d¢ = a¢”d{. Then, except on the straight lines ¢p = 0, the system (1.4b) has the same topological phase
portraits as the following system:

do
Fid

d _ 1 _
2y, o= o b vl (1)
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