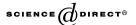
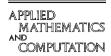


Available online at www.sciencedirect.com





SEVIER Applied Mathematics and Computation 172 (2006) 86–90

www.elsevier.com/locate/amc

On computing of arbitrary positive integer powers for one type of even order symmetric circulant matrices—I

Jonas Rimas

Department of Applied Mathematics, Faculty of Fundamental Sciences, Kaunas University of Technology, Kaunas 51368, Lithuania

Abstract

In this paper we derive the general expression of the *l*-th power $(l \in N)$ for one type of symmetric circulant matrices of order n = 2p $(p \in N, p \ge 2)$. © 2005 Elsevier Inc. All rights reserved.

Keywords: Circulant matrices; Eigenvalues; Eigenvectors; Jordan's form; Chebyshev polynomials

1. Introduction

Solving some difference, differential equations and delay differential equations we meet the necessity to compute the arbitrary positive integer powers of square matrix [1–3]. In this paper we derive the general expression of the l-th power ($l \in N$) for one type of symmetric circulant matrices [4] of even order.

E-mail address: jonas.rimas@fmf.ktu.lt

2. Derivation of general expression

Consider the *n*-th order $(n = 2p, p \in N, p \ge 2)$ symmetric circulant matrix *B* of the following type:

$$B = \begin{pmatrix} 0 & 1 & & & & 1 \\ 1 & 0 & 1 & & & & \\ & 1 & 0 & 1 & & & \\ & & & \ddots & & & \\ & & & 1 & 0 & 1 \\ 1 & & & & 1 & 0 \end{pmatrix}. \tag{1}$$

The *l*-th power $(l \in N)$ of this matrix we will find using the expression $B^l = TJ^l\mathsf{T}^{-1}$ [5], where *J* is the Jordan's form of *B*, *T* is the transforming matrix. Matrices *J* and *T* can be found provided eigenvalues and eigenvectors of the matrix *B* are known. The eigenvalues of *B* are defined by the characteristic equation

$$|B - \lambda E| = 0; (2)$$

here E is the identity matrix of the n-th order.

Let us denote

$$D_{n}(\alpha) = \begin{vmatrix} \alpha & 1 & & & & 1 \\ 1 & \alpha & 1 & & & \\ & 1 & \alpha & 1 & & \\ & & \ddots & & \\ & & & 1 & \alpha & 1 \\ 1 & & & & 1 & \alpha \end{vmatrix}, \quad \Delta_{n}(\alpha) = \begin{vmatrix} \alpha & 1 & & & \\ 1 & \alpha & 1 & & 0 \\ & 1 & \alpha & 1 & \\ & & \ddots & & \\ & 0 & & 1 & \alpha & 1 \\ & & & & 1 & \alpha \end{vmatrix}; \quad (3)$$

here $\alpha \in R$. Then

$$|B - \lambda E| = D_n(-\lambda). \tag{4}$$

From (3) follows

$$D_n = \alpha \Delta_{n-1} - 2\Delta_{n-2} - 2(-1)^n$$

and

$$\Delta_n = \alpha \Delta_{n-1} - \Delta_{n-2} \ (\Delta_2 = \alpha^2 - 1, \Delta_1 = \alpha, \Delta_0 = 1); \tag{5}$$

here $D_n = D_n(\alpha)$, $\Delta_n = \Delta_n(\alpha)$. Solving difference Eq. (5) we obtain $\Delta_n(\alpha) = U_n(\frac{\alpha}{2})$,

$$D_n(\alpha) = U_n(\frac{\alpha}{2}) - U_{n-2}(\frac{\alpha}{2}) - 2(-1)^n;$$
 (6)

Download English Version:

https://daneshyari.com/en/article/4637271

Download Persian Version:

https://daneshyari.com/article/4637271

<u>Daneshyari.com</u>