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Abstract

In this paper, we propose several algorithms for computing the solutions of the fol-
lowing three problems:

Problem I: Given X,B 2 Cn · m (n > m), find a centrohermitian matrix A 2 Cn · n

such that kAX � Bk = min.
Problem II: Given X,B 2 Cn · m (n > m), find a centrohermitian matrix A 2 Cn · n

such that AX = B.
Problem III: Let S be the solution set of Problem I or Problem II. Given eA 2 Cn� n,

find A� 2 S such that jjeA � A�jj ¼ infA2SjjeA � Ajj, where k Æ k is the Frobenius norm.
We show that our algorithms ensure significant savings in computational costs, as

compared to the case of an arbitrary matrix A.
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1. Introduction

Consider the solutions of the following general form of the Problem I (Prob-
lem IV): Given X,B 2 Cn · m (n > m), find a matrix A 2 Cn · n such that

kAX � Bk = min. There are three standard ways to solve it. They are the nor-
mal equations, the QR decomposition, and the singular value decomposition
(SVD), respectively. Each way has its advantage and disadvantage, which de-
pends on the rank and condition number of the coefficient matrix X, and the
relative importance of speed and reliability to the user (see [2] for details). If
X has full column rank m, one can use the normal equations or the QR decom-
position to solve the Problem IV. If X is not of full rank, then the SVD is an
adequate choice.

To be specific, we take example for SVD to develop our algorithms. The cor-
responding algorithms by the normal equations or the QR decomposition can
be developed by a similar way.

Assume that the SVD of the matrix X is

X ¼ bU bR 0

0 0

 !bV H ¼ cU 1
bRcV 1

H
; ð1Þ

where bU ¼ ðcU 1 ; cU 2Þ, bV ¼ ðcV 1 ;cV 2Þ are, respectively, n · n and m · m unitary

matrices with bU 1 2 Cn�r̂, bV 1 2 Cm�r̂, r̂ ¼ rankðX Þ, bR ¼ diagðr̂1; . . . ; r̂r̂Þ, r̂i > 0,
1 6 i 6 r̂. Then the general solution of Problem IV can be written as

A ¼ BcV 1
bR�1cU 1

H
þ CcU 2

H
; ð2Þ

where C is any of all n� ðn� r̂Þ complex matrices.
The conventional algorithm based on the SVD for computing the problem

IV can be outlined as follows:

Algorithm 1. This algorithm for computing a solution of Problem IV.

Input X, B and C.

Step 1. Compute the SVD of the matrix X according to (1).
Step 2. Compute A according to (2).

The number of operations to compute a solution of the Problem IV consists
of two parts. One is the computational costs of the SVD in (1). It takes
nm2 � 1

3
m3 complex multiplications and about the same number of complex

additions when n � m, and about 2nm2 � 2
3
m3 complex multiplications and

about the same number of complex additions for smaller n. Another is the oper-
ations of solving Eq. (2). By the conventional algorithm for computing matrix–
matrix multiplication, it performs ðmþ 1Þnr̂ þ n3 complex multiplications and
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