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Abstract

A new numerical algorithm is applied to simulate two-dimensional lid-driven cavity flows. In this new algorithm, the
momentum equations are first transformed using an exponential function to eliminate the convection terms in the equa-
tions. Then a central differencing scheme is employed to discretize the transformed equations. The cavity flows studied in
this work include those with non-zero velocity component in the y-direction on the upper and lower boundaries. The
results for the velocity components along the geometric centerline, stream function patterns, and vorticity contours are
presented and discussed. The predicted results are in excellent agreement with benchmark solutions.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The partial differential equations describing fluid flow throughout space and time are, in most cases, non-
linear in nature. Exact solutions only exist for a few specific cases with simple geometries and boundary con-
ditions, or for simplified equations in which some of the more complicated physical phenomena are neglected.
As the use of digital computers has become widespread, computational methods are now widely used for com-
plicated nonlinear problems with complex boundary conditions.

In order to solve the partial differential equations numerically, the equations must be discretized. The par-
tial differential equations that govern the physical process of fluid flow usually have four types of terms. These
are the transient term, convection term, diffusion term and source term. The transient term can be discretized
using a first-order forward or backward differencing scheme. For the source term, no discretization is needed
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if there are no derivatives in it. If the source term contains either first-order or second-order derivatives, a cen-
tral differencing scheme can be employed for the interior nodal points. For the nodal points adjacent to the
boundary, a backward or forward differencing scheme can be adopted. The diffusion term contains second-
order derivatives and the second-order central differencing scheme is the most appropriate scheme to discretize
this term. The convection term is nonlinear and involves first-order spatial derivatives. The discretization of
the convection term is one of the major difficulties in numerical solutions of the governing equations for fluid
flow. The primary difference between various differencing schemes is the method of discretization of the con-
vection terms.

Many research efforts have been made to develop an effective differencing scheme to discretize the convec-
tion terms. Typical differencing schemes are the four classical ones, namely, the first-order upwind scheme
(FOU), hybrid scheme, power-law scheme, and exponential scheme [1]. Furthermore, more complex higher-
order upwind differencing schemes, such as the second-order upwind scheme (SOU) (original idea traced to
Price et al. [2]), skew-upwind differencing scheme (SUD) [3], quadratic upstream interpolation for convective
kinematics (QUICK) [4] and simple high-accuracy resolution program scheme (SHARP) [5], were developed
to discretize the convective terms. In addition to the schemes mentioned above, some researchers proposed
quite different schemes adopting different ideas. For examples, Sakai [6] proposed a new finite variable differ-
ence method, in which a variable spatial difference instead of the conventional Ax was adopted for the discret-
ization of the convection term. Jasak et al. [7] discussed the issue of boundedness in the discretization of the
convection terms in transport equations and developed the total variation diminishing criterion that localizes
it. Development of methods to discretize the convective terms has been a major research topic in the academic
community.

In the present study, an alternative approach to discretizing the governing equations is used. In this
approach, the convection terms in the partial differential equations are first eliminated using a mathematical
manipulation, and the resulting equations are discretized using a central differencing scheme. Both the fourth-
order central differencing scheme and the second-order central differencing scheme are used to discretize the
transformed partial differential equations. This new algorithm has been used to solve the two-dimensional par-
abolic partial differential equation and elliptic partial differential equation [8,9]. The predicted results using the
proposed algorithm agree well with analytic solutions.

The objective of the present work is to apply the new algorithm to lid-driven cavity flows. A lid-driven cav-
ity flow, which is the flow in the cavity-driven by the motion of a boundary surface, is a typical problem that
has been extensively studied, both experimentally and numerically. For example, Pan and Acrivos [10] used a
photographic technique to determine the flow patterns for finite cavities, as well as for cavities of effectively
infinite depth for Reynolds numbers ranging from 20 to 4000. Meanwhile, they obtained a numerical creeping
flow solution by solving a biharmonic equation. Chen et al. [11] used the finite analytic method to solve heat
transfer in a cavity flow at Reynolds numbers from 100 to 2000 and Prandtl numbers from 0.1 to 10. Ghia
et al. [12] utilized the lid-driven cavity flow as a model problem to study the effectiveness of the coupled
strongly implicit multigrid method. Kim and Moin [13] employed a method based on a fractional-step, or
time-splitting, scheme in conjunction with the approximate factorization technique to simulate the flow inside
a lid-driven cavity. de Felice et al. [14] applied a family of single-step time-marching upwind schemes to the lid-
driven and thermally-driven square cavity problems.

2. Lid-driven cavity flows

The geometry of the flow in a lid-driven square cavity is shown in Fig. 1. The dimension of the cavity is L.
The upper boundary of the cavity moves at a constant velocity U in the x-direction. The lid-driven flows con-
sidered in this study also have non-zero velocity component in the y-direction on the upper and lower bound-
aries of the cavity. The Reynolds number is defined by Re = UL/v, where v is the kinematic viscosity of
the fluid. Results are presented for Re = 100 in this study. The velocity in the x-direction on the upper bound-
ary (U) is 1 and the velocity in the x-direction on the other three boundaries are zero. The velocity in the
y-direction on the left and right-hand side boundaries are also set to be zero. The velocity in the y-direction
on the upper and lower boundaries are given as follows:
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