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Abstract

In this paper, by using some new analysis techniques, we study the approximation

problems of common fixed points of Halpern�s iterative sequence for a class of finite

nonexpansive mappings in strictly convex and reflexive Banach spaces by using

Banach�s limit. The main results presented in this paper generalize, extend and improve

the corresponding results of Bauschke [The approximation of fixed points of composi-

tions of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 202 (1996) 150–

159], Halpern [Fixed points of nonexpansive maps, Bull. Am. Math. Soc. 73 (1967)

957–961], Shioji and Takahashi [Strong convergence of approximated sequences for
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Let X be a real Banach space and X* be the dual space of X. Let

u : [0,1] ¼: R+ ! R+ be a continuous strictly increasing function such that

u(0) = 0 and u(t) ! 1 as t ! 1. This function u is called a gauge function.

The duality mapping Ju :X ! X* associated with a gauge function u is defined

by

JuðxÞ ¼ ff 2 X � : hx; f i ¼ kxk � uðkxkÞ; kf k ¼ uðkxkÞg; x 2 X ;

where h Æ , Æ i denotes the generalized duality pairing between X and X*. In the

case that u(t) = t, we write J for Ju and call J the normalized duality mapping.

Now we give some elementary definitions:

Definition 1. A Banach space X is said to have a weakly continuous duality
mapping if there exists a gauge function u such that Ju is single-valued and

weak to weak star sequentially continuous.

It is known that lp(1 < p < 1) has a weakly continuous duality mapping
with a gauge function u(t) = tp�1. Setting

UðtÞ ¼
Z t

0

uðsÞds; t P 0;

then one sees that U is a convex function and

JuðxÞ ¼ oUðkxkÞ; x 2 X ;

where o denotes the subdifferential in the sense of convex analysis. The subdif-
ferential inequality

UðkykÞ P UðkxkÞ þ hy � x; jxi; x; y 2 X ; jx 2 JuðxÞ;

implies that the inequality

Uðkxþ ykÞ 6 UðkxkÞ þ hy; jxþyi; x; y 2 X ; jxþy 2 Juðxþ yÞ.
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