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a b s t r a c t

This paper focuses on blow-up solutions of ordinary differential equations (ODEs). We
present amethod for validating blow-up solutions and their blow-up times, which is based
on compactifications and the Lyapunov function validation method. The necessary criteria
for this construction can be verified using interval arithmetic techniques. Some numerical
examples are presented to demonstrate the applicability of our method.
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1. Introduction

In this paper, we consider the initial value problem defined by the following ordinary differential equations in Rm (m ∈

N):

dy(t)
dt

= f (y(t)) , y(0) = y0, (1)

where t ∈ [0, T ) with 0 < T ≤ ∞, f : Rm
→ Rm is a C1 function, and y0 ∈ Rm. Unless otherwise noted, f is assumed

to be a polynomial, whose coefficients are real numbers. Our focus in this paper is a class of solutions of (1) called blow-up
solutions.
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Fig. 1. Numerical blow-up solution of (3) with p = 3. The L∞-norm of solutions becomes larger and larger, and may become infinite within a finite time.
We typically regard solutions whose L∞-norms become sufficiently large within finite times as ‘‘blow-up solutions’’ in a numerical sense.

Definition 1.1. Define tmax > 0 as

tmax := sup

t̄ : a solution y ∈ C1([0, t̄)) of (1) exists


.

We say that the solution y of (1) blows up if tmax < ∞. In such a case, tmax is called the blow-up time of (1).

The simplest example of blow-up phenomena can be seen for the following ordinary differential equation (ODE) in R1:

dy
dt

= y2, y(0) = y0. (2)

When y0 > 0, the exact solution of (2) is y(t) = (y−1
0 − t)−1. The value of y(t) becomes infinite as t → y−1

0 − 0. That is, y(t)
blows up at t = y−1

0 . Blow-up solutions can also be observed for partial differential equations (PDEs), such as the nonlinear
heat equations (e.g., [1,2]) given by

ut = ∆u + |u|p−1u, p > 1, (3)

the nonlinear wave equations (e.g., [3,4]), and the nonlinear Schrödinger equations (e.g., [5]). In the case of PDEs, many
researchers have studied blow-up phenomena such as blow-up times, blow-up criteria, the behavior of solutions near
blow-up times (e.g., blow-up rate), and the topology or geometry of blow-up sets. Studies of blow-up phenomena can be
of importance both mathematically and physically. For example, in the case of the nonlinear heat equation (3), blow-up
solutions describe the combustion of solid fuels [6]. Similarly, the blow-up time corresponds to the time when the fuel
ignites. Blow-up phenomena associated with (3) thus describe the process of combustion.

The numerical analysis of blow-up solutions, such as of nonlinear heat and reaction–diffusion equations [7–11], of
nonlinear wave equations [12,13], and of nonlinear Schrödinger equations [14,15], has also been studied. However, in
almost all numerical studies concerning blow-up solutions, ‘‘blow-up solutions’’ have been only computed approximately.
For example, typical numerical computations of blow-up solutions begin by setting an appropriately large number M , say
106. Then, one numerically solves the differential equations, and regards computed solutions whose supremum norms are
larger than M as blow-up solutions (Fig. 1). However, this criterion provides us with no proof that these computed blow-
up solutions are rigorous blow-up solutions. In other words, it is possible that ‘‘numerical blow-up solutions’’ just describe
extremely large but bounded solutions. For example, consider (2) again, and the perturbed equation

dy
dt

= y2 − ϵy3, y(0) = y0 > 0,

where ϵ > 0 is a sufficiently small parameter. One can easily see that the solution tends to y = 1/ϵ as t → ∞. Obviously,
this solution is not a blow-up solution, while the dominant behavior of this solution resembles that of dy/dt = y2. In such
a case for a general system, it is not easy to judge whether a computed solution is truly a blow-up solution. Therefore, an
exact criterion for blow-up solutions is necessary to concretely obtain rigorous blow-up solutions.

The blow-up time tmax is one of the key considerations for blow-up solutions. Some specific solutions, such as self-similar
solutions, can be described via transformations involving tmax (see, e.g., [16]), in which case we assume that tmax is known
in advance. However, the detection of tmax itself is not easy, because tmax, in general, depends on an initial condition (as
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