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a b s t r a c t

In this work, a second-order approximation of the fractional substantial derivative
is presented by considering a modified shifted substantial Grünwald formula and its
asymptotic expansion. Moreover, the proposed approximation is applied to a fractional
diffusion equationwith fractional substantial derivative in time.With the use of the fourth-
order compact scheme in space, we give a fully discrete Grünwald–Letnikov-formula-
based compact difference scheme and prove its stability and convergence by the energy
method under smooth assumptions. In addition, the problem with nonsmooth solution is
also discussed, and an improved algorithm is proposed to deal with the singularity of the
fractional substantial derivative. Numerical examples show the reliability and efficiency of
the scheme.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Anomalous sub-diffusion process, commonly described by the continuous time randomwalks (CTRWs), and also known
as non-Brownian sub-diffusion, arises in numerous physical, chemical and biological systems; see [1–4]. The Feynman–Kac
formula named after Richard Feynman and Mark Kac, establishes a link between parabolic partial differential equations
(PDEs) and Brownian functionals. To figure out the probability density function (PDF) of some non-Brownian functionals,
the fractional Feynman–Kac equation has been derived in [5–9]. The non-Brownian functionals can be defined by A = t
0 U(x(τ ))dτ , where x(t) is the trajectory of a non-Brownian particle and different choices of U(x) can depict diverse

systems. In particular, if taking U(x) ≡ 0, the fractional Feynman–Kac equation reduces to the well-known fractional
Fokker–Planck equation; see [5,6,10] for details. Lévy walks give a proper dynamical description in the superdiffusive
domain, where the temporal and spatial variables of Lévy walks are strongly correlated and the PDFs of waiting time
and jump length are spatiotemporal coupling [8]. Thus, an important operator, fractional substantial derivative has been
proposed to describe the CTRWmodelswith coupling PDFs. This spatiotemporal coupling operatorwas also presented in [7],
where the CTRW model with position-velocity coupling PDF was discussed. Recently, Carmi and Barkai [5] also used the
substantial derivative to derive the forward and backward fractional Feynman–Kac equations. Due to its potential properties
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andwide application, the fractional substantial derivative has attractedmany scholars’ attention; see [11,12] and references
therein.

The fractional substantial derivative operator of order α (n − 1 < α < n) is defined by [12]
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It is noted that ifλ is a nonnegative constant, then the fractional substantial derivative is equivalent to the Riemann–Liouville
tempered derivative defined in [13–15], and taking λ = 0 in (1.1) leads to the left Riemann–Liouville derivative. Meanwhile,
to obtain the non-Brownian functionals, whose path integrals are over Lévy trajectories, the space-fractional Fokker–Planck
equation and the tempered space fractional diffusion equations have been widely used; see [16–18].

The current work is devoted to proposing a second-order Grünwald–Letnikov-formula-based approximation for the
fractional substantial derivative (1.1), and applying it to derive a high-order fully discrete scheme for the time fractional
substantial diffusion equation (TFSDE)

0D
α,λ
t u(x, t) = ∆u(x, t) + F(x, t), x ∈ Ω, t ∈ (0, T ], (1.2)

u(x, 0) = u0(x), x ∈ Ω, (1.3)
u(x, t)|x∈∂Ω = φ(x, t), t ∈ (0, T ], (1.4)

where∆ is the Laplacian operator, x denotes the one-dimensional or two-dimensional space variable, ∂Ω is the boundary of
domainΩ, F(x, t), u0(x) and φ(x, t) are given functions; 0D

α,λ
t is the substantial derivative defined by (1.1), and 0 < α ≤ 1.

The main novelty of our paper is the derivation of a second-order operator, which is based on the modified definition of
the Grünwald derivative (see Section 3.4, [19]), for the approximation of the fractional substantial derivative. The modified
Grünwald derivative is defined by [19]
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Actually, if dropping the term α
2 τ off in the right side of above definition, one gets the original definition of the Grünwald

derivative. The advantage of the modified Grünwald derivative is that it permits the design of more efficient algorithms to
approximate the Riemann–Liouville fractional derivatives than using the shifted Grünwald–Letnikov formula directly. In
this paper, by developing the modified Grünwald derivative and the shifted Grünwald–Letnikov formula to the fractional
substantial derivative, a modified shifted substantial Grünwald formula and its asymptotic expansion are presented. Based
upon the asymptotic expansion, a second-order approximation of the fractional substantial derivative is derived.

There are also some other approaches for the approximation of fractional derivatives, such as the L1 approximation
[20,21], the fractional linear multi-step methods (FLMMs) developed by Lubich [22], the L2 approximation with using
superior convergence [23,24], etc. However, to the best of authors’ knowledge, very limited work has been presented for
the fractional substantial derivative. Chen and Deng [12] extended the p-th order FLMMs [25] to approximate the fractional
substantial derivative, and applied it to solve the fractional Feynman–kac equation [26] lately. Very recently, Chen and
Deng [27] proposed some algorithms for the equation with the fractional substantial derivative in time and the tempered
fractional derivatives in space, in which the numerical stability and error estimate have been given for a scheme with the
first-order accuracy in time and the second-order accuracy in space.

The main goal of our paper is to construct a second-order approximation for the time fractional substantial derivative,
and subsequently to solve the TFSDE (1.2)–(1.4) by combining the existed fourth-order compact approximation for the space
derivatives [28], and establish the numerical stability and error estimate of the derived fully discretized scheme.

In this work, we assume that the solution to the underlying equation satisfies suitable regularity requirements. The
assumption can be satisfied in certain conditions, while it may not hold for many time-fractional differential equations; see
related discussion for the case λ = 0 in [29–32]. To circumvent the requirement of high regularity of the solution, we apply
starting quadrature to add correction terms in the proposed scheme. The starting quadrature was first developed in [25],
and has been used to deal with problems with nonsmooth solution; see [26,22]. The validity of the proposed algorithm is
illustrated in Example 6.3 by solving a two-dimensional time fractional substantial diffusion equation.

The remainder of this paper is organized as follows. In Section 2, a second-order operator for the approximation of the
fractional substantial derivative is derived. In Section 3, the proposed approximation is applied to TFSDE (1.2)–(1.4), and a
fully discretized scheme is derived by combining the fourth-order compact formula in space. In Section 4, we give a discrete
prior estimate for the numerical solution, and thenprove the convergence and stability of the proposed scheme. The behavior
of our proposed scheme when applied to solve problems with non-smooth solution is further discussed and the improved
algorithm is proposed in Section 5. Numerical results are presented in Section 6. Some concluding remarks are included in
the final section.
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