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a b s t r a c t

An obstacle problem for a nonlocal operator is considered; the operator is a nonlocal
integral analogue of the Laplacian operator and, as a special case, reduces to the fractional
Laplacian. In the analysis of classical obstacle problems for the Laplacian, the obstacle is
taken to be a smooth function. For the nonlocal obstacle problemconsidered here, obstacles
are allowed to have jump discontinuities. We cast the nonlocal obstacle problem as a
minimization problem wherein the solution is constrained to lie above the obstacle. We
prove the existence and uniqueness of a solution in an appropriate function space. Then,
the well posedness and convergence of finite element approximations are demonstrated.
The results of numerical experiments are provided that illustrate the theoretical results and
the differences between solutions of local, i.e., partial differential equation, and nonlocal
obstacle problems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A class of obstacle problems can be cast in the form of an elliptic variational inequality as follows. Given an open domain
Ω ∈ Rn with boundary ∂Ω , f ∈ L2(Ω), and ψ ∈ H1(Ω) ∩ C(Ω) such that ψ ≤ 0 on ∂Ω , find u belonging to the closed
convex set K :=


v ∈ H1

0 (Ω) : v ≥ ψ a.e.inΩ

such that

a(u, v − u) ≥ (f , v − u) for all v ∈ K, (1)

where a(u, v) =

Ω

∇u · ∇v dx and (f , v) =

Ω
f v dx. The variational inequality (1) is equivalent to the minimization

problem

min
u∈K

1
2


Ω

|▽u|2 dx −


Ω

uf dx

. (2)

Obstacle problems of the type (1) or (2) have many applications such as membrane deformation in elasticity theory and
nonparametric minimal and capillary surfaces as geometrical problems [1–4]. In general, ψ is assumed to be a smooth
(at least continuous) function, in which case it is known that the solution of (1) exists, is unique, is continuous, and
possesses Lipschitz continuous first derivatives [1,2,5]. To our knowledge, there are few results about thewell-posedness and
regularity for obstacle problem with discontinuous obstacle function. Numerical methods for determining approximations
of the solution of (1) have also been developed; see, e.g., [1,2,6–8].

Nonlocal obstacle problems arise, e.g., in settings modeled by fractional partial differential equations such as those
involving the fractional Laplacian operator [9–13]. In this paper, we treat more general nonlocal problems, with fractional
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Laplacian and other fractional derivative problems being special cases. Nonlocal operators in the peridynamics theory of
solid mechanics [14–16] and anomalous diffusion problems [17–20] also fall within the purview of our study. For nonlocal
obstacle problems, one can chooseψ to be a less regular, even discontinuous, function. In addition, because the local, partial
differential equation problems are, in a precise sense, the limits of the nonlocal problems we study [19,18,21], one could
glean some information about the former for discontinuous ψ by studying the latter.

We define the action of the nonlocal operator L on a function u(x) : Ω → R by

Lu(x) := 2


Rn
γ (x, y)


u(x)− u(y)


dy ∀ x ∈ Ω ⊆ Rn. (3)

The operator L is deemed nonlocal because the value of Lu at a point x requires information about u at points y separated
from x by a finite distance; this should be contrasted with, e.g., the local Laplacian operator for which the value of 1u at a
point x requires information about u only in an infinitesimal neighborhood of x.

The operatorL has a special case the fractional Laplacian operator which is the pseudo-differential operator with Fourier
symbol F given by

F ((−∆)su)(ξ) = |ξ |2su(ξ), 0 < s < 1,

whereu denotes the Fourier transform of u. Suppose that u ∈ L2(Rn) and that
Rn


Rn


u(x)− u(y)

2
|x − y|n+2s

dydx < ∞, 0 < s < 1.

The vector space of such functions defines the fractional Sobolev space Hs(Rn). The Fourier transform can be used to show
that an equivalent characterization of the fractional Laplacian is

(−∆)su = cn,s


Rn

u(x)− u(y)
|x − y|n+2s

dy, 0 < s < 1,

for some normalizing constant cn,s, see [22,9,23,10,11]. When Ω = Rn, the fractional Laplacian is the special case of the
operator L defined above for the choice of γ (x, y) proportional to 1/|x − y|n+2s.

WhenΩ has finite volume we have that the volume constrained minimization problem

min
u

 cn,s
2


Rn


Rn

(u(x)− u(y))2

|x − y|n+2s
dxdy −


Rn

ufdxdy


subject to u = 0 on Rn/Ω (4)

is well posed for 0 ≤ s < 1, see [18,17]. Note that the volume constraint u = 0 on Rn/Ω appearing in (4) is needed for well
posedness. In fact, the boundary value problem

(−∆)su = g onΩ and u = 0 on ∂Ω (5)

is not well posed. For 1/2 < s < 1, solutions are not uniquely defined and for s ≤ 1/2, existence is not, in general, guaran-
teed. To formulate a well-posed problem, the boundary condition in (5) must be replaced by the volume constraint u = 0
on Rn/Ω; see, e.g., [18]. To differentiate between the two types of constraints, we naturally refer to the constraint u = 0 on
∂Ω in (5) as a boundary condition and refer to the constraint u = 0 on Rn/Ω in (4) as a volume constraint. We also use the
latter terminology to refer to constraints of the type u = 0 onΩB ⊂ Rn/Ω wheneverΩB has nonzero volume in Rn.

Here, we treat two types of kernels γ (x, y) in (3).
Case 1. For s ∈ (0, 1), δ > 0, cn,s > 0, and x, y ∈ Rn,

γs(x, y) =

 cn,s
|y − x|n+2s

if |y − x| ≤ δ

0 if |y − x| > δ.

Note that γs(x, y) is non-integrable in Riemann sense.
Case 2. For l ∈ (0, n), δ > 0, cn,l > 0, and x, y ∈ Rn

γl(x, y) =

 cn,l
|y − x|n−l

if |y − x| ≤ δ

0 if |y − x| > δ.

Note that γl(x, y) is integrable. Also, note that for both cases the parameter δ, sometimes referred to as the horizon, limits
the extent of the nonlocal interactions at a point x to the ball of radius δ centered at x.

LetΩI ⊂ Rn denote a bounded open domain with piecewise smooth boundary that satisfies the interior cone condition.
The corresponding ‘‘boundary’’ domain is defined by

ΩB := {y ∈ Rn
\ΩI such that ∃ x ∈ ΩI such that γ (x, y) ≠ 0 },
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