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1. Introduction

The study of nonlinear integral equations, is a subject of interest for researchers in nonlinear functional analysis. Integral
equations occur in many applications, such as in applied mathematics, and also a lot of problems in physics. On the other
hand measure of noncompactness is one of the most useful tools in nonlinear and functional analysis, metric fixed point
theory and the theory of operator equations in Banach spaces which was first introduced by Kuratowski in [1]. This concept
also used to investigate of functional equation, ordinary and partial differential equations, integral and integro-differential
equations. In this context several authors have presented some papers on the existence of solution for nonlinear integral
equations which involves the use of measure of noncompactness and many other techniques, for instance see [2-21]
and [22-28].

In this paper, we apply, the method related to the technique of measures of noncompactness in order to extend the
Darbo’s fixed point theorem [ 18] and to generalize some recent results in the literature. In this regard, we state and prove
some existence theorems of coupled fixed point for a class of operators in Banach spaces. Moreover, as an application of this
theorems, we study the problem of existence of solutions for a class of system of nonlinear integral equations which satisfy
in new certain conditions.

2. Preliminaries

In this section, we recall some definitions, notations and preliminary results which we will use throughout the paper.
Denote by R the set of real numbers and put R, = [0, +00). Let (E, ||.|) be a real Banach space with zero element 0 and
B (x, r) denote the closed ball in E centered at x with radius r. The symbol B, stand for the ball B (0, r). If X is a nonempty
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subset of E we denote by X, ConvX the closure and the closed convex hull of X respectively. Finally, let us denote by Mg the
family of nonempty bounded subsets of E and by A its subfamily consisting of all relatively compact subsets.
In this paper, we will use axiomatically defined measures of noncompactness as presented in the book [18].

Definition 2.1 ([18]). A mapping u : Mg —> [0, 00) is said to be a measure of noncompactness in E if it satisfies the
following conditions;

) The family Keru = {X € Mg : u(X) = 0} is nonempty and Ker . C MNg.
JIEXCY = uX) < w(Y).
) p(X) = uX).

NC4) wu(ConvX) = u(X).
)
)

intersection set Xoo = ()=, X» is nonempty.

The family Keru described in (MNC1) said to be the kernel of the measure of noncompactness . Observe that the
intersection set X, from (MNC6) is a member of the family Keru. In fact, since u(Xs) < u(X,) for any n, we infer that
U (X) = 0. This yields that X, € Kerpu.

Now we present the definition of a coupled fixed point for a bivariate vector function which we need in the proof of main
results and a useful theorem in [ 18] related to the construction of a measure of noncompactness on a finite product space.

Definition 2.2 (/29]). An element (x,y) € X x X is called a coupled fixed point of a mapping T : X x X — X if T(x,y) = x
and T(y, x) = y.

Theorem 2.3 ([18]). Suppose i1, iL2, . . ., 1y be the measures in Banach spaces Eq, E,, . . ., E, respectively. Moreover assume

that the function F : [0, co)" — [0, 00) is convex and F(x1, X3, ..., X;) = Oifandonly if x; = 0fori=1,2,...,n. Then
AX) = F(p1(X1), 2(X2), « . ., (X))

defines a measure of noncompactness in E; x E; x - - - X E, where X; denotes the natural projection of X intoE;fori = 1,2, ...,n.

Now, as a result of Theorem 2.3, we present the following examples.

Example 2.4. Let i be a measure of noncompactness on a Banach space E, and let the function F : [0, 00)> — [0, c0) is
convex and F (x1, x;) = O ifand only if x; = 0 fori = 1, 2. Then

AX) =F (uX1), n(X2))
defines a measure of noncompactness in E x E where X; denote the natural projection of X into E.
Example 2.5 ([10]). Let i be a measure of noncompactness on a Banach space E, considering F(x,y) = x + y for any
(x,y) € [0, 00)%. Then we see that F is convex and F(x,y) = 0 if and only if x = y = 0, hence all the conditions of

Theorem 2.3 are satisfied. Therefore, 11 (X) = wu(X;) + 1 (X,) defines a measure of noncompactness in the space E x E where
X;, i = 1, 2 denote the natural projections of X into E.

Example 2.6 ([10]). Let u be a measure of noncompactness on a Banach space E. If we define F(x, y) = max {x, y} for any
(x,y) € [0, 00)?, then all the conditions of Theorem 2.3 are satisfied, and fi(X) = max {x(X;), #(X2)} is a measure of
noncompactness in the space E x E where X;, i = 1, 2 denote the natural projections of X into E.

Darbo’s fixed point theorem is a very important generalization of Schauder’s fixed point theorem, and includes the
existence part of Banach’s fixed point theorems.

Theorem 2.7 (Schauder[3]). Let 2 be a closed, convex subset of a Banach space E. Then every compact, continuous map
T : 2 — $2 has at least one fixed point.

Theorem 2.8 (Darbo[15]). Let $2 be a nonempty, bounded, closed, and convex subset of a Banach space E and let T : 2 — £
be a continuous mapping. Assume that there exists a constant k € [0, 1) such that

w (T X)) <k (X)
forany X C 2. Then T has a fixed point.
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