ELSEVIER

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Solving the Yang-Baxter-like matrix equation for rank-two matrices

Duanmei Zhou^a, Guoliang Chen^b, Jiu Ding^{b,c,*}

^a College of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, People's Republic of China ^b Department of Mathematics, East China Normal University, Shanghai 200241, People's Republic of China

^c Department of Mathematics, The University of Southern Mississippi, Hattiesburg, MS 39406-5045, USA

ARTICLE INFO

Article history: Received 30 July 2015 Received in revised form 5 September 2016

ABSTRACT

Let $A = PQ^T$, where P and Q are two $n \times 2$ complex matrices of full column rank such that det $Q^TP \neq 0$ and so 0 is a semisimple eigenvalue of A with multiplicity n - 2. We solve the quadratic matrix equation AXA = XAX completely.

© 2016 Elsevier B.V. All rights reserved.

MSC: 15A24 15A18 15A21

Keywords: Rank-two matrix Matrix equation Jordan form

1. Introduction

In a recent paper [1], the so-called Yang-Baxter-like matrix equation

AXA = XAX

was solved completely, where $A = pq^T$ is a given $n \times n$ complex matrix of rank one with two nonzero *n*-dimensional vectors p and q. Eq. (1.1) has its origin in the classical Yang–Baxter equation obtained by Yang [2] for studying the many-body problem in 1967 and then by Baxter [3] independently for a lattice model in 1972, and is related to the quantum Yang–Baxter equation. We refer to [4–6] for more details about the Yang–Baxter equation and its relations to other mathematical areas such as braid group and knot theory and physical ones like quantum field theory.

A systematical study of the above quadratic matrix equation from the viewpoint of matrix theory basically began with the paper [7] in which finitely many spectral solutions have been obtained associated with the eigenvalues of an arbitrary matrix *A*, based on the spectral projection matrices onto the generalized eigenspaces of all the eigenvalues of *A*. In addition, based on each spectral solution, infinitely many projection-based solutions were constructed in [8] for the special case that the corresponding eigenvalue is semisimple with multiplicity at least two. For the matrix *A* with some more general Jordan form structures, several families of solutions have been found in [9], and helped by a well known result on solving the Sylvester equation, the expressions of all or most commuting solutions became available in [10] for the same types of matrices *A* as in [9]. On the other hand, all the commuting solutions of (1.1) have been determined by [11] when every eigenvalue of *A* is semisimple so that it is diagonalizable.

http://dx.doi.org/10.1016/j.cam.2016.09.007 0377-0427/© 2016 Elsevier B.V. All rights reserved. (1.1)

^{*} Corresponding author at: Department of Mathematics, East China Normal University, Shanghai 200241, People's Republic of China. *E-mail addresses*: gzzdm2008@163.com (D. Zhou), glchen@math.ecnu.edu.cn (G. Chen), jiudin@gmail.com (J. Ding).

Although it looks simple in format, Eq. (1.1) is very difficult to solve for general A since it is equivalent to solving a quadratic system of n^2 equations in n^2 variables, which is a tough task in algebraic geometry. Consequently, it is still a challenging problem to find all the solutions of (1.1) for general matrices A.

In this paper we solve (1.1) for all the solutions when *A* is of rank two, extending the results of [1] and as an initial step to deal with the general rank-*k* case. As is well known, any matrix of rank two can be written as

$$A = PQ^{T} = p_{1}q_{1}^{T} + p_{2}q_{2}^{T},$$

where $P = [p_1, p_2]$ and $Q = [q_1, q_2]$ are $n \times 2$ matrices of full column rank.

Eq. (1.1) always has two solutions X = 0 and X = A, which are called the trivial solutions. To find all the nontrivial solutions, we assume that the 2×2 matrix $Q^T P$ is of full rank. As will be seen, there are three cases for our analysis, which will be included in the corresponding subsections in Section 3 that follows.

In the next section we shall present all the solutions of (1.1) when n = 2 and A is already its Jordan form with nonzero eigenvalues. Such results will be used in the subsequent section which will be devoted to finding all the solutions with $A = PQ^T$ such that det $Q^TP \neq 0$. Some numerical examples will be presented in Section 4 to illustrate our results, and we conclude with Section 5.

2. Preliminary results

In order to find all the solutions of (1.1), we need to find all the solutions of (1.1) for a 2 × 2 matrix A in its Jordan canonical form. Any 2 × 2 matrix has one of the following Jordan forms:

$$\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}, \begin{bmatrix} \lambda & 0 \\ 0 & \mu \end{bmatrix}, \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}, \quad \lambda \neq \mu.$$

Now we list all the solutions of (1.1) when A is one of them and nonsingular.

Lemma 2.1. Let $\lambda \neq 0$ and

$$A = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}.$$

Thenall the nontrivial solutions of (1.1) are

$$X = \begin{bmatrix} \lambda & y \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & y \\ 0 & \lambda \end{bmatrix}, \begin{bmatrix} x & \frac{\lambda x - x^2}{z} \\ z & \lambda - x \end{bmatrix}, \quad \forall x, y, \ \forall z \neq 0.$$

Proof. Write

$$X = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$$

Then, since $\lambda \neq 0$, the matrix equation (1.1) can be written as

$$\begin{cases} x^2 - \lambda x + yz = 0, \\ (x + w - \lambda)y = 0, \\ (x + w - \lambda)z = 0, \\ w^2 - \lambda w + yz = 0. \end{cases}$$

First we let z = 0. Then the above system is reduced to

$$\begin{cases} x^2 - \lambda x = 0, \\ (x + w - \lambda)y = 0, \\ w^2 - \lambda w = 0, \end{cases}$$

solving which gives the solutions

$$X = 0, \ A, \ \begin{bmatrix} \lambda & y \\ 0 & 0 \end{bmatrix}, \ \begin{bmatrix} 0 & y \\ 0 & \lambda \end{bmatrix}, \ \forall \ y$$

Download English Version:

https://daneshyari.com/en/article/4637676

Download Persian Version:

https://daneshyari.com/article/4637676

Daneshyari.com