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a b s t r a c t

This paper focuses on a fractional-step finite element method for the magnetohydrody-
namics problems in three-dimensional bounded domains. It is shown that the proposed
fractional-step scheme allows for a discrete energy identity. A rigorous error analysis is
presented. We derive the temporal and spatial error estimates of O(∆t + h) for the ve-
locity and the magnetic field in the discrete space l2(H1) ∩ l∞(L2) under the constraint
∆t ≥ Ch.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The incompressible magnetohydrodynamics (MHD) problems are used to describe the flow of a viscous, incompressible
and electrically conducting fluid, which are governed by the following time-dependent nonlinear coupled problems:

∂u
∂t

−
1
Re

1u + (u · ∇)u + ∇p + Sb × curl b = f, (1.1)

div u = 0, (1.2)
∂b
∂t

+
1
Rm

curl (curl b) − curl (u × b) = 0, (1.3)

div b = 0, (1.4)

for x ∈ Ω and t ∈ (0, T ) with T > 0, where Ω ⊂ R3 is a bounded and simply-connected domain which is either convex
or has a C1,1 boundary ∂Ω . Re, Rm and S are three positive constants and denote the Reynolds number, the magnetic
Reynolds number and the coupling number, respectively. The vector-value function f represents the body forces applied
to the fluid. The MHD problems (1.1)–(1.4) couple the incompressible Navier–Stokes equations with Maxwell’s equations.
Thus, the unknowns in (1.1)–(1.4) are the fluid velocity u, the pressure p and themagnetic field b. We refer to Hughes [1] and
Moreau [2] for the understanding of the physical background of the MHD problems. To study (1.1)–(1.4), the appropriate
initial and boundary conditions are needed. For the sake of simplicity, in this paper, we consider the following initial and
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boundary conditions:

u(x, 0) = u0, b(x, 0) = b0 in Ω, (1.5)
u = 0, b · n = 0, curl b × n = 0 on ∂Ω × [0, T ], (1.6)

where n denotes the unit outward normal vector on ∂Ω . It is necessary to require that u0 and b0 satisfy the compatibility
conditions div u0 = 0 and div b0 = 0.

The numerical methods for the incompressible MHD problems have received much attention in the last decades. We
refer to Gerbeau–Bris–Lelièvre [3] for a review of numerical methods. The mixed finite element approximation was first
proposed and studied for the stationary MHD problems in [4], where H1-conforming elements were used to discretize the
magnetic field provided that Ω is either convex or has a C1,1 boundary ∂Ω . Inspired by the stabilization method for Stokes
problems in [5], a stabilizationmixed finite elementmethod for the stationaryMHDproblemswas developed byGerbeau [6].
For the time-dependent MHD problems (1.1)–(1.6), He proposed a linearized semi-implicit Euler scheme in [7], where
L2-unconditional convergence was proved by using the negative norm technique. For the non-convex domain or Lipschitz
polyhedra domain of engineering practice, the magnetic field b may have regularity below H1(Ω). In this case, the
H1-conforming finite element discretization forb, albeit stable,maynot converge to the correctmagnetic field. Amixed finite
element formulation based on H(curl)-elements (or Nédélec elements) for b was proposed and studied by Schötzau in [8]
for the stationary MHD problems. Other different numerical methods can be found in [9–18] and references cited therein.
Roughly speaking, the difficulties in solving theMHD problems numerically are mainly of three kinds: themixed type of the
equations; the incompressible condition and the treatment of the pressure; the nonlinearities of the problems, which are
very similar to the incompressible Navier–Stokes problems. In the 1960s, Chorin [19] and Temam [20] proposed a projection
method for Navier–Stokes problems,which decoupled the velocity and the pressure in theNavier–Stokes problems. The idea
of the projectionmethod is first to compute a velocity field without taking into account incompressibility, and then perform
a pressure correction, which is a projection back to the subspace of solenoidal (divergence-free) vector fields. However, the
drawback is the appearance of the numerical boundary layer due to the incompatibility of the pressure boundary conditions
with those of the original Navier–Stokes problems [21,22]. For the time-dependent MHD problems (1.1)–(1.6), inspired by
the projection method in [19,20], Prohl in [14] proposed a projection scheme. However, the projection scheme in [14] does
not allow for a discrete energy estimate. To avoid using artificial boundary conditions of pressure type, some fractional-
step schemes for the Navier–Stokes problems were introduced and studied in [23,24]. It is a two-step scheme in which
the incompressibility and the nonlinearities of the Navier–Stokes problems are split into different steps, and allows the
enforcement of the original boundary conditions in all substeps.

In this paper, we propose a two-step fractional-step scheme to approximate the solution of theMHDproblems (1.1)–(1.4)
with the initial and boundary conditions (1.5)–(1.6). We will prove that the proposed fractional-step scheme allows for a
discrete energy identity. To state the main results derived, we introduce the following notations. Let X be a Banach space
equipped with norm ∥ · ∥X . Let 0 = t0 < t1 < · · · < tN = T be a uniform partition of the time interval [0, T ] with time step
1t = T/N and tn = n1t for 0 ≤ n ≤ N . We denote two discrete norms by

∥un
∥l2(X) =


1t

N
n=1

∥un
∥
2
X

1/2

, ∥un
∥l∞(X) = max

1≤n≤N
∥un

∥X .

It is proved that the time-discrete fractional-step scheme provides the temporal error estimates of O(1t) for the velocity
and themagnetic field in l2(H1)∩ l∞(L2) andO(

√
1t) for the pressure in l2(L2). For the fully discrete fractional-step scheme,

the finite element error estimates of O(1t +h) for the velocity and the magnetic field in l2(H1)∩ l∞(L2) are obtained under
the constraint 1t ≥ Ch.

The remainder of this paper is organized as follows: in the next section, we begin with some notations, lay out some
assumptions and recall someknown inequalities frequently used. The new linearized projection schemeand themain results
are presented in Section 3. Meanwhile, the discrete energy identity is derived in Section 3. The proof containing the main
results is given in Sections 4 and 5, which is split into several theorems.

2. Mathematical setting

For the mathematical setting of the MHD problems (1.1)–(1.4) with the initial and boundary conditions (1.5)–(1.6), we
introduce some function spaces and their associated norms. For k ∈ N+, 1 ≤ s ≤ +∞, let W k,s(Ω) denote the standard
Sobolev space. The norm inW k,s(Ω) is defined by

∥u∥W k,s =




|β|≤k


Ω

|∇
βu|sdx

1/s

for 1 ≤ s < +∞,
|β|≤k

sup
Ω

|∇
βu| for s = +∞,
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