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a b s t r a c t

In the present work, a kind of trigonometric collocation methods based on Lagrange basis
polynomials is developed for effectively solving multi-frequency oscillatory second-order
differential equations q′′(t)+Mq(t) = f (q(t)). The properties of the obtainedmethods are
investigated. It is shown that the convergent condition of these methods is independent
of ∥M∥, which is very crucial for solving oscillatory systems. A fourth-order scheme of the
methods is presented. Numerical experiments are implemented to show the remarkable
efficiency of the methods proposed in this paper.
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1. Introduction

The numerical treatment of multi-frequency oscillatory systems is a computational problem of an overarching
importance in a wide range of applications, such as quantum physics, circuit simulations, flexible body dynamics and
mechanics (see, e.g. [1–7] and the references therein). The main theme of the present paper is to construct and analyse
a kind of efficient collocation methods for solving multi-frequency oscillatory second-order differential equations of the
form

q′′(t) + Mq(t) = f

q(t)


, q(0) = q0, q′(0) = q′

0, t ∈ [0, tend], (1)

where M is a d × d positive semi-definite matrix implicitly containing the frequencies of the oscillatory problem and
f : Rd

→ Rd is an analytic function. The solution of this system is a multi-frequency nonlinear oscillator because of the
presence of the linear termMq. System (1) is a highly oscillatory problemwhen ∥M∥ ≫ 1. In recent years, various numerical
methods for approximating solutions of oscillatory systems have been developed bymany researchers. Readers are referred
to [8–16] and the references therein. Once it is further assumed that M is symmetric and f is the negative gradient of a
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real-valued function U(q), the system (1) is identical to the following initial value Hamiltonian system

q̇ = ∇pH(q, p), q(0) = q0,
ṗ = −∇qH(q, p), p(0) = p0 ≡ q′

0
(2)

with the Hamiltonian function

H(q, p) =
1
2
pᵀp +

1
2
qᵀMq + U(q). (3)

This is an important system which has received much attention by many authors (see, e.g. [1,2,4,5,17]).
In [18], the authors took advantage of shifted Legendre polynomials to obtain a local Fourier expansion of the system (1)

and derived a kind of collocation methods (trigonometric collocation methods). The analysis and the results of numerical
experiments in [18] showed that the trigonometric collocation methods are more efficient in comparison with some
alternative approaches that have previously appeared in the literature.Motivated by thework in [18], this paper is devoted to
the formulation and analysis of another trigonometric collocation methods for solving multi-frequency oscillatory second-
order systems (1). We will consider a more classical approach and use Lagrange polynomials to obtain the methods.
Because of this different approach, compared with the methods in [18], the obtained methods have a simpler scheme and
can be implemented in practical computations at a lower cost. These trigonometric collocation methods are designed by
interpolating the function f of (1) by Lagrange basis polynomials, and incorporating the variation-of-constants formula
with the idea of collocation methods. It is noted that these integrators are a kind of collocation methods and they share
all the interesting features of collocation methods. We analyse the properties of the trigonometric collocation methods.
We also consider the convergence of the fixed-point iteration for the methods. It is important to emphasize that for the
trigonometric collocationmethods, the convergent condition is independent of ∥M∥, which is a very important property for
solving oscillatory systems.

This paper is organized as follows. In Section 2, we formulate the scheme of trigonometric collocation methods based on
Lagrange basis polynomials. The properties of the obtained methods are analysed in Section 3. In Section 4, a fourth-order
scheme of the methods is presented and numerical tests confirm that the method proposed in this paper yields a dramatic
improvement. Conclusions are included in Section 5.

2. Formulation of the methods

To begin with we restrict the multi-frequency oscillatory system (1) to the interval [0, h] with any h > 0:

q′′(t) + Mq(t) = f

q(t)


, q(0) = q0, q′(0) = q′

0, t ∈ [0, h]. (4)

With regard to the variation-of-constants formula for (1) given in [19], we have the following result on the exact solution
q(t) of the system (1) and its derivative q′(t) = p(t):

q(t) = φ0(t2M)q0 + tφ1(t2M)p0 + t2
 1

0
(1 − z)φ1


(1 − z)2t2M


f

q(tz)


dz,

p(t) = −tMφ1(t2M)q0 + φ0(t2M)p0 + t
 1

0
φ0


(1 − z)2t2M


f

q(tz)


dz,

(5)

where t ∈ [0, h] and

φi(M) :=

∞
l=0

(−1)lM l

(2l + i)!
, i = 0, 1. (6)

From this result, it follows that

q(h) = φ0(V )q0 + hφ1(V )p0 + h2
 1

0
(1 − z)φ1


(1 − z)2V


f

q(hz)


dz,

p(h) = −hMφ1(V )q0 + φ0(V )p0 + h
 1

0
φ0


(1 − z)2V


f

q(hz)


dz,

(7)

where V = h2M.

The main point in designing practical schemes to solve (1) is based on replacing f (q) in (7) by some expansion. In this
paper, we interpolate f (q) as

f

q(ξh)


∼

s
j=1

lj(ξ)f

q(cjh)


, ξ ∈ [0, 1], (8)
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