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a b s t r a c t

We consider the approximation of elliptic eigenvalue problemwith an interface. The main
aim of this paper is to prove the stability and convergence of an immersed finite element
method (IFEM) for eigenvalues using Crouzeix–Raviart P1-nonconforming approximation.
We show that spectral analysis for the classical eigenvalue problem can be easily applied to
ourmodel problem.We analyze the IFEM for elliptic eigenvalue problemswith an interface
and derive the optimal convergence of eigenvalues. Numerical experiments demonstrate
our theoretical results.
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1. Introduction

In this paper, we consider the approximation of elliptic eigenvalue problems with an interface. The interface problems
are often encountered in fluid dynamics, electromagnetics, and materials science [1–4]. The main difficulty in solving such
problems is caused mainly by the non-smoothness of solution across the interface. One choice to overcome it is to use
finite element methods based on fitted meshes along the interface. Another choice is to use unfitted meshes independent
of interface geometry for the computational domain. One of the advantages of using unfitted meshes is that we do not need
to generate a mesh each time in the case of a moving interface which reduces computational costs. In this respect, several
numerical methods have been proposed for example an immersed boundary method (IBM), extended finite element method
(XFEM), immersed interface method (IIM), and immersed finite element method (IFEM). The IBM was introduced by Peskin
to simulate cardiac mechanics and associated blood flow [5]. This method employs Eulerian and Lagrangian variables on
Cartesian mesh and curvilinear mesh and they are linked by a smooth approximation of the Dirac delta function [6,7]. The
XFEM is developed by extending the classical finite element method by enriching the finite element space with additional
degrees of freedom [8,9]. LeVeque and Li [10] introduced the IIM based on the finite difference method where the jump
conditions are properly incorporated in the scheme. However, the resulting linear system of equation from thismethodmay
not be symmetric and positive definite [11]. As an alternative, the IFEM has been developed for solving interface problems
with unfitted meshes [11]. A feature of IFEM is that local basis functions are constructed to satisfy the jump conditions
without additional degrees of freedom. The method has been applied to various types of partial differential equations
involving interface such as two-phase incompressible flows [12] and a linear elasticity problem with a perfectly bonded
interface [13,14]. The related works in this direction can be found in [15–20] and references therein.

The purpose of this paper is to prove the stability and convergence of an immersed finite elementmethod for eigenvalues
using Crouzeix–Raviart P1-nonconforming approximation [17]. As a model problem, we consider the eigenvalue problem
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with an interface, i.e.

−∇ · (β∇u) = λu in Ω+
∪ Ω−,

[u]Γ = 0,

β

∂u
∂n


Γ

= 0,

u = 0 on ∂Ω,

(1)

where Ω is a convex polygonal domain in R2 which is separated into two subdomains Ω+ and Ω− by a C2-interface
Γ = ∂Ω−

⊂ Ω with Ω+
= Ω \ Ω−. The symbol [ · ]Γ denotes the jump across Γ . The coefficient β is bounded below and

above by two positive constants,

0 < β1 ≤ β ≤ β2 < ∞.

The P1-nonconforming FEM is widely used in solving elliptic equations and is shown to be useful in solving the mixed
formulation of elliptic problems [21] and the Stokes equations [22]. Recently, Kwak et al. [17] introduced an immersed FEM
based on the piecewise P1-nonconforming polynomials and they proved optimal orders of convergence.

There have been various mathematical studies of finite element methods for eigenvalue problems. A unified approach
to a posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems
is presented in [23]. The convergence of an adaptive method for elliptic eigenvalue problems is proved in [24]. For a
nonconforming approximation, Dari et al. [25] provide a posteriori error analysis of the eigenvalue. The study of mixed
eigenvalue problems can be found in [26–28]. To our best knowledge, spectral and convergence analysis of IFEM for
eigenvalue problems with an interface has not been done so far. It is worth emphasizing that the spectral properties of
eigenvalue problems with interface play key roles in the analysis and simulation for more complicated problems such as
fluid–structure interactions, moving interfaces and the numerical stability for PDEs.

In this work, we analyze the IFEM for elliptic eigenvalue problems with interface and derive the optimal convergence
of eigenvalues. Furthermore, we show that spectral analysis for the classical eigenvalue problem can be easily applied to
our model problem. In particular, the spectral approximation of Galerkin methods can be proved by using fundamental
properties of compact operators in Banach space. Such an investigation originates from a series of papers of Osborn and
Babuška [29,30]. It has been extended in [31,32] to estimate Galerkin approximations for noncompact operators. Further
application to discontinuous Galerkin approximations has been developed by Buffa et al. [33]. We formulate the eigenvalue
problem with interface in terms of compact operators in order to understand the spectral behavior. The analysis presented
in this paper is carried out along the lines of Refs. [31,32].

The paper is structured as follows. In the next section, we give a brief review on P1-nonconforming IFEM [17]. In
Section 3, we introduce a modified version of IFEMwith an additional term and formulate the eigenvalue problemwith the
interface. Section 4 contains the analysis of the spectral approximation which is proved to be spurious-free and complete.
The approximation is proved by means of basic results from the theory of compact operator in Banach space. In Section 5
we derive the convergence rate of eigenvalues based on P1-nonconforming IFEM. In Section 6, we demonstrate numerical
experiments for a model problem which corroborate the theoretical results in the preceding sections. In the final section,
we provide a summary of our results.

2. Preliminaries

We consider an elliptic interface problem corresponding to the model problem (1):

−∇ · (β∇u) = f in Ω+
∪ Ω−,

[u]Γ = 0,


β
∂u
∂n


Γ

= 0,

u = 0 on ∂Ω.

(2)

The weak formulation of the problem (2) is to find u ∈ H1
0 (Ω) such that

Ω

β∇u · ∇vdx =


Ω

f vdx, ∀v ∈ H1
0 (Ω) (3)

with f ∈ L2(Ω).
We begin by introducing a Sobolev space which is convenient for describing the regularity of the solution of the elliptic

interface problem (2). For a bounded domain D, we let Hm(D) = Wm
2 (D) be the usual Sobolev space of order m with semi-

norm and norm denoted by | · |m,D and ∥·∥m,D, respectively. For realm ≥ 0, the spaceHm(D) is defined by interpolation [34].
We define the spaceH1+α(D) := {u ∈ H1(D) : u ∈ H1+α(D ∩ Ω s), s = +, −} for 0 < α ≤ 1
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