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a b s t r a c t

In this paper we completed the classification of the phase portraits in the Poincaré disc of
uniform isochronous cubic and quartic centers previously studied by several authors. There
are three and fourteen different topological phase portraits for the uniform isochronous
cubic and quartic centers respectively.
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1. Introduction and statement of the main results

The interest in the isochronous centers started in the XVII centurywith theworks of C. Huygens, see [1]. The isochronicity
phenomena appear in many physical problems, see for instance [2].

We say that p ∈ R2 is a center if it is a singular point of a planar differential system such that there is a neighborhood U
of pwhere all the orbits of U\{p} are periodic. For every q ∈ U\{p} let T (q) denote the period of the periodic orbit through q.
When T (q) is constant for all q ∈ U\{p} we say that p is an isochronous center. The fact that p is isochronous does not imply
that the angular velocity of the vector −→pq is the same for all periodic orbits in U\{p}. When such velocity is constant we say
that p is a uniform isochronous center or a rigid center.

The uniform isochronous planar centers are characterized in the next result.

Proposition 1. Assume that a planar polynomial differential system of degree n has a center at the origin of coordinates. Then
this center is uniform isochronous if and only if by doing a linear change of variables and a scaling of time it can be written as

ẋ = −y + x f (x, y), ẏ = x + y f (x, y), (1)

with f (x, y) a polynomial in x and y of degree n − 1, f (0, 0) = 0.

Proposition 1 is well-known, a proof of it can be found in [3].
The next result due to Collins [4] in 1997, also obtained by Devlin, Lloyd and Pearson [5] in 1998, and by Gasull, Prohens

and Torregrosa [6] in 2005 characterizes the uniform isochronous centers of cubic polynomial systems.
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Theorem 2. A cubic polynomial differential system has a uniform isochronous center at the origin if and only if it can be written
as

ẋ = −y + xf (x, y), ẏ = x + yf (x, y), (2)

where f (x, y) = a1x + a2y + a3x2 + a4xy − a3y2, and satisfies a21a3 − a22a3 + a1a2a4 = 0.

We note that the proof of Theorem 2 is obtained doing an affine transformation and a rescaling of the time.
Theorem 2 can be improved as follows.

Corollary 3. A cubic polynomial differential system has a uniform isochronous center at the origin if and only if it can be written
as

ẋ = −y + xf (x, y), ẏ = x + yf (x, y), (3)

where f (x, y) = a1x + a2y + a4xy, and satisfies a1a2 = 0 and a4 ≠ 0.

Corollary 3 is proved in Section 2.We note that (3) has one parameter less than in (2) and eases the polynomial condition
that the parameters must hold.

Using Theorem 2 Collins obtains two normal forms for all the uniform isochronous cubic centers, onewith one parameter
and the other a given system. We prefer to work with the unique normal form given in Corollary 3.

In the next theorem we present the first integrals of the uniform isochronous cubic centers described by systems (3).
More complicated first integrals were obtained in [7] using the normal form (2) and were given only in polar coordinates.
The new normal form (3) allows to provide easier expressions of these first integrals in Cartesian coordinates.

Theorem 4. The first integrals H of system (3) are described in what follows.
Case 1: a21 + a22 ≠ 0.
Subcase 1.1: 4a4 > a21 and a2 = 0.

H = e−2 arctan

2a4y+a1

S

 
x2 + y2

a4y2 + a1y + 1

S/a1

,

where S =


4a4 − a21.

Subcase 1.2: 4a4 < a21 and a2 = 0.

H =
(x2 + y2)S/a1(S + a1 + 2a4y)1−S/a1

(S − a1 − 2a4y)1+S/a1
,

where S =


a21 − 4a4.

Subcase 1.3: 4a4 < −a22 and a1 = 0.

H = e−2 arctan

2a4x+a2

S

 
x2 + y2

a4x2 + a2x − 1

S/a2

,

where S =


−4a4 − a22.

Subcase 1.4: 4a4 > −a22 and a1 = 0.

H =
(x2 + y2)S/a2(S + a2 + 2a4x)1−S/a2

(S − a2 − 2a4x)1+S/a2
,

where S =


4a4 + a22.

Subcase 1.5: 4a4 = a21 and a2 = 0.

H =
(x2 + y2)e

4
2+a1y

(2 + a1y)2
.

Subcase 1.6: 4a4 = −a22 and a1 = 0.

H =
(x2 + y2)e

4
2−a2x

(2 − a2x)2
.
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