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a b s t r a c t

Calculation of electric/magnetic field parameters and source intensity based on measure-
ments is discussed. It is required to assess the accuracy of obtained solution. Upper esti-
mates of themeasurement error limits and analytical approaches to error calculations give
considerable overestimations and prove to be inefficient for practical applications. The ap-
proach based on statistical estimate of solution error is proposed. The obtained error esti-
mate is in good agreement with experimental data.
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1. Introduction

Constant magnetic field and static electric field of various engineering objects are considered. Let us describe the field
sources by function u considered as an element of normalized space U (u ∈ U), the measured field values (input data f )
are considered as an element of the normed space F (f ∈ F). The relation between u and f is governed by the operator
equation

Au = f , (1)

where operator A continuously represents U in F .
Determination of sources u based on the known values of field f necessitates solution of an inverse problem. In some

cases, it is useful to determine functionals based on distribution of sources: the problem for calculation of values is
formulated

g = Cu, (2)

where C is an operator acting from the normed space U to the space G.
For the magnetic field the function u may represent magnetization M⃗ = (MX ,MY ,MZ )

T , f—magnetic flux density
in measurement points B⃗ = (BX , BY , BZ )

T , and g—multipole moments or magnetic flux density in locations other than
measurement points (field extrapolation). In this case, the relation between the values of the field and the sources is given
by the equation

V
K(x, y, z, x′, y′, z ′)M⃗(x′, y′, z ′) dV = B⃗(x, y, z), (3)
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where K is an equation kernel that can be presented as a matrix function

K =

KXX KXY KXZ
KYX KYY KYZ
KZX KZY KZZ


,

x, y, z—coordinates of measurement point, x′, y′, z ′—coordinates of volume point V .
Magnetic dipole moment P⃗ = (PX , PY , PZ )T is calculated by the formula

V
M⃗(x′, y′, z ′) dV = P⃗. (4)

In its turn, the function u may represent current source strength I for static electric field, f—the values of potential
at measurement points ϕ, and g—multipole moments or values of the potential in other conditions than during the
measurement. When the sources of current are located at the surface of object S, the values of the field are related to the
sources by the equation

S
Φ(x, y, z, x′, y′, z ′) I(x′, y′, z ′) dS = ϕ(x, y, z), (5)

whereΦ is an equation kernel.
Dipole electric moment is calculated as

S
I(x′, y′, z ′)r⃗ dS = P⃗, (6)

where r⃗ = (x′, y′, z ′)T .
This paper considers the class of problems with known source locations or known boundaries of source distribution but

unknown strength. It is assumed that a priori information about the strength of field sources is not available.
Eqs. (3) and (5) are Fredholm equations of the 1st kind. The solution of these equations is an ill-posed problem.
The problem of magnetic field extrapolation based on equivalent surface sources is investigated in [1]. Directly, recovery

ofmagnetic field sources, i.e. solution to Problem (1), is covered in [2–4]. The purpose of these papers is to develop algorithms
for solving the inverse problem. No accuracy assessment for obtained solution to the inverse problem, or extrapolation error
assessment for the general case is performed.

The purpose of this study is to estimate calculation error for the functionals of kind (2).

2. On the choice of solution method

In accordance with general notion regarding the solution of ill-posed problems, a regularization algorithm is formulated
taking into account the information about the error of input data and operator. In case of Tikhonovmethod, a regularization
parameter is selected based on residual method or generalized residual method and directly depends on the level of error.
In iteration algorithms, the number of iterations depends on the error of input data. It has been theoretically proved that in
general case it is impossible to obtain the solution to an incorrect problem if error of input data and operator are unknown
[5,6]. However, in certain practical applications, a number of algorithms [7,8] that do not use error data might provide an
acceptable solution.

Regularization error can be estimated for some classes of problems. In this case, a priori information is required for such
estimation (for example, belonging of solution to some set) as well as the data on the error of input data and operator. In the
considered statement of the problem, normal pseudosolution obtained on the basis of accurate input data is selected as an
accurate solution for estimation of regularization error. However, the total error of problem solution cannot be found based
on obtained estimations due to discrepancy between true (physical) solution and normal pseudosolution.

In classical theory of ill-posed problems, the obtained estimations of accuracy appear to be efficient at relatively low level
of input data error but it is not always the case for solution of some practical problems.

When the field is measured in specially equipped laboratories, it is possible to obtain sufficiently accuratemeasurements
and estimate the error of measurements. However, for engineering problems it may well be required to take measurements
outside the laboratories when it is not feasible to move an object or it is too large in size. In such conditions, the
external influence can be unavoidable and rather strong causing a large measurement error. When the actual error of
input data is great, some methods of ill-posed problems solution directly relating the solution to measurement error (for
example, residual method) are inefficient. In this case, it is difficult to estimate the accuracy of solution. Even if full-scale
measurements are performed in well-controlled conditions (under moderate external influence), the error of measurement
is governed by many factors and external effects and it is difficult to determine the actual error of measurement. In some
cases, only upper error estimates can be obtained. However, if the upper estimates of measurement error are used for
solution of inverse problem, it results in excessively smoothed solution and overestimation of obtained values in case of
solution accuracy assessment.
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