ELSEVIER

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

A generalized Lyapunov's inequality for a fractional boundary value problem*

Amar Chidouh^{a,*}, Delfim F.M. Torres^b

^a Laboratory of Dynamic Systems, Houari Boumedienne University, Algiers, Algeria ^b Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

ARTICLE INFO

Article history: Received 30 September 2015 Received in revised form 22 February 2016

MSC: 26A33 34A08

Keywords: Fractional differential equations Lyapunov's inequality Boundary value problem Positive solutions Guo-Krasnoselskii fixed point theorem

1. Introduction

Lyapunov's inequality is an outstanding result in mathematics with many different applications – see [1,2] and references therein. The result, as proved by Lyapunov in 1907 [3], asserts that if $q : [a, b] \rightarrow \mathbb{R}$ is a continuous function, then a necessary condition for the boundary value problem

$$\begin{cases} y'' + qy = 0, & a < t < b, \\ y(a) = y(b) = 0 \end{cases}$$
(1)

to have a nontrivial solution is given by

$$\int_{a}^{b} |q(s)| \, ds > \frac{4}{b-a}.\tag{2}$$

Lyapunov's inequality (2) has taken many forms, including versions in the context of fractional (noninteger order) calculus, where the second-order derivative in (1) is substituted by a fractional operator of order α .

 $^{\diamond}$ Part of first author's Ph.D., which is carried out at Houari Boumedienne University.

* Corresponding author.

E-mail addresses: m2ma.chidouh@gmail.com (A. Chidouh), delfim@ua.pt (D.F.M. Torres).

http://dx.doi.org/10.1016/j.cam.2016.03.035 0377-0427/© 2016 Elsevier B.V. All rights reserved.

ABSTRACT

We prove existence of positive solutions to a nonlinear fractional boundary value problem. Then, under some mild assumptions on the nonlinear term, we obtain a smart generalization of Lyapunov's inequality. The new results are illustrated through examples. © 2016 Elsevier B.V. All rights reserved.

Theorem 1 (See [4]). Consider the fractional boundary value problem

$$\begin{cases} {}_{a}D^{\alpha}y + qy = 0, \quad a < t < b, \\ y(a) = y(b) = 0, \end{cases}$$
(3)

where $_{a}D^{\alpha}$ is the (left) Riemann–Liouville derivative of order $\alpha \in (1, 2]$ and $q : [a, b] \rightarrow \mathbb{R}$ is a continuous function. If (3) has a nontrivial solution, then

$$\int_{a}^{b} |q(s)| \, ds > \Gamma(\alpha) \left(\frac{4}{b-a}\right)^{\alpha-1}.$$
(4)

A Lyapunov fractional inequality (4) can also be obtained by considering the fractional derivative in (3) in the sense of Caputo instead of Riemann–Liouville [5]. More recently, Rong and Bai obtained a Lyapunov-type inequality for a fractional differential equation but with fractional boundary conditions [6]. Motivated by [7-10] and the above results, as well as existence results on positive solutions [11-14], which are often useful in applications, we focus here on the following boundary value problem:

$$_{a}D^{\alpha}y + q(t)f(y) = 0, \quad a < t < b,$$

 $y(a) = y(b) = 0,$
(5)

where $_{a}D^{\alpha}$ is the Riemann–Liouville derivative and $1 < \alpha \leq 2$. Our first result asserts existence of nontrivial positive solutions to problem (5) (see Theorem 8). Then, under some assumptions on the nonlinear term f, we get a generalization of inequality (4) (see Theorem 10).

The paper is organized as follows. In Section 2 we recall some notations, definitions and preliminary facts, which are used throughout the work. Our results are given in Section 3: using the Guo–Krasnoselskii fixed point theorem, we establish in Section 3.1 our existence result; then, in Section 3.2, assuming that function $f : \mathbb{R}_+ \to \mathbb{R}_+$ is continuous, concave and nondecreasing, we generalize Lyapunov's inequalities (2) and (4).

2. Preliminaries

Let C[a, b] be the Banach space of all continuous real functions defined on [a, b] with the norm $||u|| = \sup_{t \in [a,b]} |u(t)|$. By L[a, b] we denote the space of all real functions, defined on [a, b], which are Lebesgue integrable with the norm

$$\|u\|_L = \int_a^b |u(s)| \, ds.$$

The reader interested in the fractional calculus is referred to [15]. Here we just recall the definition of (left) Riemann–Liouville fractional derivative.

Definition 2. The Riemann–Liouville fractional derivative of order $\alpha > 0$ of a function $u : [a, b] \rightarrow \mathbb{R}$ is given by

$$_{a}D^{\alpha}u(t)=\frac{1}{\Gamma(n-\alpha)}\frac{d^{n}}{dt^{n}}\int_{a}^{t}\frac{u(s)}{(t-s)^{\alpha-n+1}}ds,$$

where $n = [\alpha] + 1$ and Γ denotes the Gamma function.

Definition 3. Let *X* be a real Banach space. A nonempty closed convex set $P \subset X$ is called a cone if it satisfies the following two conditions:

(i) $x \in P$, $\lambda \ge 0$, implies $\lambda x \in P$; (ii) $x \in P$, $-x \in P$, implies x = 0.

Lemma 4 (Jensen's Inequality [16]). Let μ be a positive measure and let Ω be a measurable set with $\mu(\Omega) = 1$. Let I be an interval and suppose that u is a real function in $L(d\mu)$ with $u(t) \in I$ for all $t \in \Omega$. If f is convex on I, then

$$f\left(\int_{\Omega} u(t)d\mu(t)\right) \leq \int_{\Omega} (f \circ u)(t)d\mu(t).$$
(6)

If f is concave on I, then the inequality (6) holds with " \leq " substituted by " \geq ".

Lemma 5 (*Guo–Krasnoselskii Fixed Point Theorem* [17]). Let X be a Banach space and let $K \subset X$ be a cone. Assume Ω_1 and Ω_2 are bounded open subsets of X with $0 \in \Omega_1 \subset \overline{\Omega}_1 \subset \Omega_2$, and let $T : K \cap (\overline{\Omega}_2 \setminus \Omega_1) \to K$ be a completely continuous operator such that

(i) $||Tu|| \ge ||u||$ for any $u \in K \cap \partial \Omega_1$ and $||Tu|| \le ||u||$ for any $u \in K \cap \partial \Omega_2$; or (ii) $||Tu|| \le ||u||$ for any $u \in K \cap \partial \Omega_1$ and $||Tu|| \ge ||u||$ for any $u \in K \cap \partial \Omega_2$.

Then, T has a fixed point in $K \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

Download English Version:

https://daneshyari.com/en/article/4637725

Download Persian Version:

https://daneshyari.com/article/4637725

Daneshyari.com