

Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/cam)

Journal of Computational and Applied **Mathematics**

journal homepage: www.elsevier.com/locate/cam

A generalized Lyapunov's inequality for a fractional boundary value problem^{*}

Amar Chidouh ^{[a,](#page-0-1)[∗](#page-0-2)}, Delfim F.M. Torres ^{[b](#page-0-3)}

a *Laboratory of Dynamic Systems, Houari Boumedienne University, Algiers, Algeria* ^b *Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal*

A R T I C L E I N F O

Article history: Received 30 September 2015 Received in revised form 22 February 2016

MSC: 26A33 34A08

Keywords: Fractional differential equations Lyapunov's inequality Boundary value problem Positive solutions Guo–Krasnoselskii fixed point theorem

1. Introduction

Lyapunov's inequality is an outstanding result in mathematics with many different applications — see [\[1,](#page--1-0)[2\]](#page--1-1) and references therein. The result, as proved by Lyapunov in 1907 [\[3\]](#page--1-2), asserts that if $q : [a, b] \to \mathbb{R}$ is a continuous function, then a necessary condition for the boundary value problem

$$
\begin{cases} y'' + qy = 0, & a < t < b, \\ y(a) = y(b) = 0 \end{cases}
$$
 (1)

to have a nontrivial solution is given by

$$
\int_a^b |q(s)| ds > \frac{4}{b-a}.\tag{2}
$$

Lyapunov's inequality [\(2\)](#page-0-4) has taken many forms, including versions in the context of fractional (noninteger order) calculus, where the second-order derivative in [\(1\)](#page-0-5) is substituted by a fractional operator of order α .

✩ Part of first author's Ph.D., which is carried out at Houari Boumedienne University.

∗ Corresponding author.

E-mail addresses: m2ma.chidouh@gmail.com (A. Chidouh), delfim@ua.pt (D.F.M. Torres).

<http://dx.doi.org/10.1016/j.cam.2016.03.035> 0377-0427/© 2016 Elsevier B.V. All rights reserved.

a b s t r a c t

We prove existence of positive solutions to a nonlinear fractional boundary value problem. Then, under some mild assumptions on the nonlinear term, we obtain a smart generalization of Lyapunov's inequality. The new results are illustrated through examples. © 2016 Elsevier B.V. All rights reserved. **Theorem 1** (*See [\[4\]](#page--1-3)*)**.** *Consider the fractional boundary value problem*

$$
\begin{cases} aD^{\alpha}y + qy = 0, & a < t < b, \\ y(a) = y(b) = 0, & \end{cases}
$$
\n
$$
(3)
$$

 α where _aD^{α} is the (left) Riemann–Liouville derivative of order $\alpha \in (1, 2]$ and $q : [a, b] \to \mathbb{R}$ is a continuous function. If (3) has a *nontrivial solution, then*

$$
\int_{a}^{b} |q(s)| ds > \Gamma(\alpha) \left(\frac{4}{b-a}\right)^{\alpha-1}.
$$
 (4)

A Lyapunov fractional inequality (4) can also be obtained by considering the fractional derivative in (3) in the sense of Caputo instead of Riemann–Liouville [\[5\]](#page--1-4). More recently, Rong and Bai obtained a Lyapunov-type inequality for a fractional differential equation but with fractional boundary conditions [\[6\]](#page--1-5). Motivated by $[7-10]$ and the above results, as well as existence results on positive solutions $[11-14]$, which are often useful in applications, we focus here on the following boundary value problem:

$$
\begin{cases} aD^{\alpha}y + q(t)f(y) = 0, & a < t < b, \\ y(a) = y(b) = 0, & (5) \end{cases}
$$

where ${}_aD^\alpha$ is the Riemann–Liouville derivative and $1 < \alpha \leq 2$. Our first result asserts existence of nontrivial positive solutions to problem [\(5\)](#page-1-2) (see [Theorem 8\)](#page--1-8). Then, under some assumptions on the nonlinear term *f* , we get a generalization of inequality (4) (see [Theorem 10\)](#page--1-9).

The paper is organized as follows. In Section [2](#page-1-3) we recall some notations, definitions and preliminary facts, which are used throughout the work. Our results are given in Section [3:](#page--1-10) using the Guo–Krasnoselskii fixed point theorem, we establish in Section [3.1](#page--1-11) our existence result; then, in Section [3.2,](#page--1-12) assuming that function $f : \mathbb{R}_+ \to \mathbb{R}_+$ is continuous, concave and nondecreasing, we generalize Lyapunov's inequalities [\(2\)](#page-0-4) and [\(4\).](#page-1-1)

2. Preliminaries

Let *C*[*a*, *b*] be the Banach space of all continuous real functions defined on [*a*, *b*] with the norm $||u|| = \sup_{t \in [a,b]} |u(t)|$. By *L*[*a*, *b*] we denote the space of all real functions, defined on [*a*, *b*], which are Lebesgue integrable with the norm

$$
||u||_L = \int_a^b |u(s)| ds.
$$

The reader interested in the fractional calculus is referred to [\[15\]](#page--1-13). Here we just recall the definition of (left) Riemann–Liouville fractional derivative.

Definition 2. The Riemann–Liouville fractional derivative of order $\alpha > 0$ of a function $u : [a, b] \to \mathbb{R}$ is given by

$$
{}_{a}D^{\alpha}u(t)=\frac{1}{\Gamma(n-\alpha)}\frac{d^{n}}{dt^{n}}\int_{a}^{t}\frac{u(s)}{(t-s)^{\alpha-n+1}}ds,
$$

where $n = [\alpha] + 1$ and Γ denotes the Gamma function.

Definition 3. Let *X* be a real Banach space. A nonempty closed convex set *P* ⊂ *X* is called a cone if it satisfies the following two conditions:

(i) $x \in P$, $\lambda \geq 0$, implies $\lambda x \in P$; (ii) $x \in P$, $-x \in P$, implies $x = 0$.

Lemma 4 (*Jensen's Inequality* [\[16\]](#page--1-14)). Let μ be a positive measure and let Ω be a measurable set with $\mu(\Omega) = 1$. Let I be an *interval and suppose that u is a real function in* $L(d\mu)$ *with* $u(t) \in I$ *for all* $t \in \Omega$ *. If f* is convex on *I*, then

$$
f\left(\int_{\Omega} u(t) d\mu(t)\right) \le \int_{\Omega} (f \circ u)(t) d\mu(t). \tag{6}
$$

If f is concave on I, then the inequality [\(6\)](#page-1-4) *holds with "*≤" *substituted by "*≥".

Lemma 5 (*Guo–Krasnoselskii Fixed Point Theorem [\[17\]](#page--1-15)*). Let X be a Banach space and let $K \subset X$ be a cone. Assume Ω_1 and Ω_2 *are bounded open subsets of X with* $0 \in \Omega_1 \subset \Omega_1 \subset \Omega_2$, and let $T : K \cap (\Omega_2 \setminus \Omega_1) \to K$ be a completely continuous operator *such that*

(i) ∥*Tu*∥ ≥ ∥*u*∥ *for any u* ∈ *K* ∩ ∂Ω¹ *and* ∥*Tu*∥ ≤ ∥*u*∥ *for any u* ∈ *K* ∩ ∂Ω2*; or* (ii) $||Tu|| \le ||u||$ *for any* $u \in K \cap \partial \Omega_1$ *and* $||Tu|| \ge ||u||$ *for any* $u \in K \cap \partial \Omega_2$. *Then, T has a fixed point in K* \cap ($\overline{\Omega}_2 \backslash \Omega_1$)*.*

Download English Version:

<https://daneshyari.com/en/article/4637725>

Download Persian Version:

<https://daneshyari.com/article/4637725>

[Daneshyari.com](https://daneshyari.com)