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a b s t r a c t

We prove existence of positive solutions to a nonlinear fractional boundary value
problem. Then, under some mild assumptions on the nonlinear term, we obtain a smart
generalization of Lyapunov’s inequality. The new results are illustrated through examples.
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1. Introduction

Lyapunov’s inequality is an outstanding result inmathematicswithmanydifferent applications— see [1,2] and references
therein. The result, as proved by Lyapunov in 1907 [3], asserts that if q : [a, b] → R is a continuous function, then a necessary
condition for the boundary value problem

y′′
+ qy = 0, a < t < b,

y(a) = y(b) = 0 (1)

to have a nontrivial solution is given by b

a
|q(s)| ds >

4
b − a

. (2)

Lyapunov’s inequality (2) has taken many forms, including versions in the context of fractional (noninteger order) calculus,
where the second-order derivative in (1) is substituted by a fractional operator of order α.
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Theorem 1 (See [4]). Consider the fractional boundary value problem
aDαy + qy = 0, a < t < b,
y(a) = y(b) = 0, (3)

where aDα is the (left) Riemann–Liouville derivative of order α ∈ (1, 2] and q : [a, b] → R is a continuous function. If (3) has a
nontrivial solution, then b

a
|q(s)| ds > Γ (α)


4

b − a

α−1

. (4)

A Lyapunov fractional inequality (4) can also be obtained by considering the fractional derivative in (3) in the sense of
Caputo instead of Riemann–Liouville [5]. More recently, Rong and Bai obtained a Lyapunov-type inequality for a fractional
differential equation but with fractional boundary conditions [6]. Motivated by [7–10] and the above results, as well as
existence results on positive solutions [11–14], which are often useful in applications, we focus here on the following
boundary value problem:

aDαy + q(t)f (y) = 0, a < t < b,
y(a) = y(b) = 0, (5)

where aDα is the Riemann–Liouville derivative and 1 < α ≤ 2. Our first result asserts existence of nontrivial positive
solutions to problem (5) (see Theorem 8). Then, under some assumptions on the nonlinear term f , we get a generalization
of inequality (4) (see Theorem 10).

The paper is organized as follows. In Section 2 we recall some notations, definitions and preliminary facts, which are
used throughout the work. Our results are given in Section 3: using the Guo–Krasnoselskii fixed point theorem, we establish
in Section 3.1 our existence result; then, in Section 3.2, assuming that function f : R+ → R+ is continuous, concave and
nondecreasing, we generalize Lyapunov’s inequalities (2) and (4).

2. Preliminaries

Let C[a, b] be the Banach space of all continuous real functions defined on [a, b] with the norm ∥u∥ = supt∈[a,b] |u(t)|.
By L[a, b] we denote the space of all real functions, defined on [a, b], which are Lebesgue integrable with the norm

∥u∥L =

 b

a
|u(s)| ds.

The reader interested in the fractional calculus is referred to [15]. Here we just recall the definition of (left)
Riemann–Liouville fractional derivative.

Definition 2. The Riemann–Liouville fractional derivative of order α > 0 of a function u : [a, b] → R is given by

aDαu(t) =
1

Γ (n − α)

dn

dtn

 t

a

u(s)
(t − s)α−n+1

ds,

where n = [α] + 1 and Γ denotes the Gamma function.

Definition 3. Let X be a real Banach space. A nonempty closed convex set P ⊂ X is called a cone if it satisfies the following
two conditions:
(i) x ∈ P, λ ≥ 0, implies λx ∈ P;
(ii) x ∈ P, −x ∈ P , implies x = 0.

Lemma 4 (Jensen’s Inequality [16]). Let µ be a positive measure and let Ω be a measurable set with µ(Ω) = 1. Let I be an
interval and suppose that u is a real function in L(dµ) with u(t) ∈ I for all t ∈ Ω . If f is convex on I, then

f


Ω

u(t)dµ(t)


≤


Ω

(f ◦ u)(t)dµ(t). (6)

If f is concave on I, then the inequality (6) holds with ‘‘≤’’ substituted by ‘‘≥’’.

Lemma 5 (Guo–Krasnoselskii Fixed Point Theorem [17]). Let X be a Banach space and let K ⊂ X be a cone. Assume Ω1 and Ω2
are bounded open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let T : K ∩ (Ω2\Ω1) → K be a completely continuous operator
such that
(i) ∥Tu∥ ≥ ∥u∥ for any u ∈ K ∩ ∂Ω1 and ∥Tu∥ ≤ ∥u∥ for any u ∈ K ∩ ∂Ω2; or
(ii) ∥Tu∥ ≤ ∥u∥ for any u ∈ K ∩ ∂Ω1 and ∥Tu∥ ≥ ∥u∥ for any u ∈ K ∩ ∂Ω2.
Then, T has a fixed point in K ∩ (Ω2\Ω1).
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