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a b s t r a c t

In this paper, we consider a feasible primal–dual interior point method for linear
semidefinite programming problem (SDP) based on Alizadeh–Haeberly–Overton (AHO)
direction (Monteiro, 1997). Firstly, and by a new and simple technique, we establish the
existence and uniqueness of optimal solution of the perturbed problem (SDP)µ and its
convergence to optimal solution of (SDP). Next, we present new different alternatives
to calculate the displacement step. After, we establish the convergence of the obtained
algorithmandwe show that its complexity isO

√
n ln


ε−1(⟨X0, S0⟩)


. Finally,wepresent

some numerical simulations which show the effectiveness of the algorithm developed in
this work.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Primal–dual interior point methods are originally developed to resolve linear programming problem. Their attractive
theoretical and numerical properties have motivated researchers to elaborate extensions for more general classes of
optimization: linear complementarity problem [1–3], convex programming [4], semidefinite programming [5–9],. . . .

Semidefinite programming (SDP) is an extension of linear programming where the vectors are replaced by the matrices
and the non-negative orthant


Rn

+


by the set of symmetrical positive semidefinite matrices. (SDP) permits to solve

numerous problems, as nonlinear programming problems, quadratic programming problems,. . . .
We distinguish two types of interior point methods for linear problems namely, projective methods and feasible or

infeasible central trajectory methods.
In this paper, we are interested in solving semidefinite programming problem (SDP) by feasible central trajectory

methods.We associate to this problemaperturbed problem, denoted (SDP)µ. The idea of thismethod consists to draw a path
of the centers defined by the perturbed KKT optimality conditions. Then, we use Newton’s method to treat the associated
perturbed equations to obtain a descent direction.

We propose four different alternatives to calculate the displacement step and study the complexity analysis of the
obtained algorithm. Finally, we give some numerical examples and a general conclusion to summarize the obtained results.
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We consider the following semidefinite programming problem

(SDP)

min⟨C, X⟩

AX = b,
X ∈ Sn

+
,

where b ∈ Rm, Sn
+
denotes the cone of positive semidefinite matrices in the real space of (n × n) symmetrical matrices Sn.

A is a linear operator from Sn to Rm defined by

AX = (⟨A1, X⟩, ⟨A2, X⟩, . . . , ⟨Am, X⟩)T .

Thematrices C andAi, i = 1, . . . ,m, are in Sn. The scalar product of twomatricesA and B in Sn is the trace of their product i.e.,
⟨A, B⟩ = tr(AB) =

n
i,j=1 aijbij. The Euclidean norm of anyM ∈ Sn is ∥M∥ = maxi=1,...,n |λi(M)|, where λi(M), i = 1, . . . , n,

are the eigenvalues of M . The Frobenius norm of M ∈ Sn is ∥M∥F = ⟨M,M⟩
1
2 . For M ∈ Sn, M ≽ 0 (M ≻ 0) means

M is positive semi-definite (positive definite). The set of all (n × n) matrices with real entries is denoted by Rn×n. Given
M ∈ Rn×n, diag(M) is the (n × n) diagonal matrix with diagonal entriesMii.MT denotes the transpose ofM ∈ Rn×n.

The dual problem associated to (SDP) is defined as follows

(DSDP)

max bTy
A∗y + S = C,
S ∈ Sn

+
,

where A∗ is the adjoint of A defined from Rm to Sn by A∗y =
m

i=1 yiAi.
The sets of strictly feasible solutions of (SDP) and (DSDP) are

0
F (SDP) =


X ∈ Sn

++
: AX = b


,

0
F (DSDP) =


(y, S) ∈ Rm

× Sn
++

: A∗y + S = C

,

respectively, where Sn
++

is the set of positive definite matrices of Sn.

Throughout this paper, we assume that
0

F (SDP) ×
0

F (DSDP) is nonempty and that the matrices Ai, i = 1, . . . ,m, are
linearly independent. Under first assumption, it is well known that both (SDP) and (DSDP) have optimal solutions X and
(S, y) such that ⟨C, X⟩ = bTy i.e., the optimal values of (SDP) and (DSDP) coincide. This last condition, called strong duality,
can be alternatively expressed as ⟨X, S⟩ = 0 or X S = 0.

To study (SDP), we replace it by the perturbed equivalent problem

(SDP)µ


min


fµ (X) = ⟨C, X⟩ + µg(X) + nµ lnµ


, µ > 0,

AX = b,

where

g(X) =


− ln (det X) if X ∈ Sn

++
,

+∞ otherwise.

We can also study (SDP) according to its perturbed dual

(DSDP)µ


max


gµ (y, S) = bTy − µg(S) − nµ lnµ


, µ > 0,

A∗y + S = C .

The paper is organized as follows:
We study in Section 2 the existence and uniqueness of optimal solution of the perturbed problem (SDP)µ and we show

thatwhenµ → 0, (SDP)µ coincideswith (SDP) i.e., if (Xµ, yµ, Sµ) is an optimal primal–dual solution of (SDP)µ and (DSDP)µ

respectively, then (X, y, S) = limµ→0(Xµ, yµ, Sµ) is an optimal primal–dual solution of (SDP) and (DSDP) respectively. In
Section 3, we present briefly primal–dual central trajectory method and we propose four different alternatives to compute
the appropriate displacement step. In Section 4, we describe the obtained algorithm, prove its convergence, give complexity
results and show that the algorithm requires at most O

√
n ln


ε−1(⟨X0, S0⟩)


iterations to obtain the optimal solution.

In Section 5, we present numerical tests on some different examples to illustrate the effectiveness of the four proposed
approaches and we compare with the standard CVX method.

The main advantage of (SDP)µ resides in the strict convexity of its objective function and its feasible domain.
Consequently, the conditions of optimality are necessary and sufficient. This, fosters theoretical and numerical studies of
the problem.

Before this, it is necessary to show that (SDP)µ has at least an optimal solution.
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