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a b s t r a c t

Subdivision schemes have become an important tool for approximation of manifold-
valued functions. In this paper, we describe a construction of manifold-valued subdivision
schemes for geodesically complete manifolds. Our construction is based upon the
adaptation of linear subdivision schemes using the notion of repeated binary averaging,
where as a repeated binary average we propose to use the geodesic inductive mean. We
derive conditions on the adapted schemes which guarantee convergence from any initial
manifold-valued sequence. The definition and analysis of convergence are intrinsic to the
manifold. The adaptation technique and the convergence analysis are demonstrated by
several important examples of subdivision schemes. Two numerical examples visualizing
manifold-valued curves generated by such schemes are given together with a link to the
code that generated them.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years methods have been developed to model certain modern data as manifold data. An example of such data
is the set of orientations of an aircraft, as recorded by its black box. This time series can be interpreted as data sampled from
a function mapping a real interval (the time) to the Lie group of orthogonal matrices (the orientations), see e.g., [1]. Yet,
classical methods for approximation cannot cope with manifold-valued functions. For instance, there is no guarantee that
linear approximationmethods such as polynomial or spline interpolation producemanifold values, due to the non-linearity
of manifolds.

Contrary to the development of classical approximation methods and numerical analysis methods for real-valued
functions, the development in the case ofmanifold-valued functions, which is rather recent, wasmainly concerned in its first
stages with advanced numerical and approximation processes, such as geometric integration of ODE on manifolds, e.g. [2],
subdivision schemes on manifolds, e.g. [3–5], and wavelets-type approximation on manifolds, e.g. [1,6]. In this paper we
focus on subdivision schemes.

Subdivision schemes were created originally to design geometrical models [7]. Soon, they were recognized as methods
for approximation [8,9]. The important advantage of these schemes is their simplicity and locality. Namely, they are defined
by repeatedly applying simple and local arithmetic averaging. This feature enables the extension of subdivision schemes to
more abstract settings, such as matrices [10], sets [11], curves [12], and nets of functions [13].
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For manifold valued data, [4] introduced the concept of adapting linear subdivision schemes to manifold values, in
particular for Lie groups data. This paper initiated a new direction of research on manifold-valued subdivision schemes, see
e.g., [14,6,5]. The adaptation of linear subdivision schemes in this paper is done by rewriting the refinement rules in repeated
binary average form, and then replacing each binary average with a weighted binary geodesic average, see e.g., [10,4].

A weighted geodesic average is a generalization of the arithmetic average (1− t)a+ tb in Euclidean spaces, and is defined
for any weight t ∈ [0, 1] as the point on the geodesic curve between the two points to be averaged, which divides it in the
ratio t

1−t (for t =
1
2 it is the midpoint). Furthermore, on several manifolds, it can also be extended to weights outside

[0, 1], by extrapolating the geodesic curve of two points beyond the points, see e.g., [14]. This facilitates the adaptation
of interpolatory subdivision schemes which typically involve averages with negative weights. The geodesic average is also
well-defined in more general spaces known as geodesic metric spaces, see e.g., [15], and our adaptation process and most
of its analyses are also valid there.

The adaptation method proposed in this paper is for values from geodesically complete manifolds. It uses a specific
form of repeated binary averaging—the geodesic inductive mean, which enables to deduce the contractivity of the adapted
schemes obtained from the well-known interpolatory 4-point scheme [9], the 6-point Dubuc–Deslauriers scheme [8], and
the first four B-spline subdivision schemes (see e.g., [16]). The contractivity is important since it is closely related to the
fundamental question of convergence.

Many results in the literature of the past few years concerning the convergence and smoothness of adapted subdivision
schemes, are based on proximity conditions (see [4]). A proximity condition describes a relation between the operation of
an adapted subdivision scheme to the operation of its linear counterpart. Since local manifold data are nearly in a Euclidean
space, the convergence results based on proximity conditions actually show that the generated values of an adapted scheme
are not ‘‘too far’’ from those generated by its original linear scheme. Thus, these results are valid only for ‘‘dense enoughdata’’,
which is, in general, a condition that is hard to quantify and depends on the properties of the underline manifold (such as
its curvature).

Recently, a progress in the convergence analysis is established by several papers which address the question of
convergence from all initial data. Such a result is presented in [17] for the adaptation of schemes with non-negative mask
coefficients to Hadamard spaces. Results for geodesic based subdivision schemes, as well as other adaptation methods, are
derived in [10] for themanifold of positive definitematrices. For the case of interpolatory subdivision schemes there are such
convergence results for several differentmetric spaces [14,18,6]. In this paper,we present a condition, termed displacement-
safe, guaranteeing that contractivity leads to convergence, for all initial data. The displacement-safe condition requires the
values after one refinement to be not too far away from the values before the refinement. First we show that our adapted
schemes are displacement-safe. Then, we demonstrate the analysis of contractivity on several adapted subdivision schemes,
obtained from popular linear schemes, withmasks of relatively small support. The contractivity guarantees the convergence
of these schemes from all initial data.

The paper is organized as follows.We start in Section 2 by providing a short survey of the required background, including
a summary on linear subdivision schemes, a brief review on manifolds and geodesics, and several popular approaches to
the adaptation of those schemes to manifold-valued data. In Section 3 we introduce the displacement-safe condition which
links contractivity and convergence. Section 4 presents our method of adaptation and the proof showing that the adapted
schemes are displacement-safe. We conclude the paper in Section 5 with the adaptation of few popular schemes, prove
their convergence from all initial manifold data, and demonstrate numerically the application of two different subdivision
schemes to data belonging to two different manifolds.

2. Theoretical background and notation

We start by providing a few background facts together with notation on subdivision schemes, on manifolds, and on the
adaptation of subdivision schemes to manifold data.

2.1. Linear univariate subdivision schemes

In the functional setting, a univariate subdivision scheme, S, operates on a real-valued sequence f = {fi ∈ R | i ∈ Z},
by applying refinement rules that map f to a new sequence S(f) associated with the values in 1

2Z. This process is repeated
infinitely and results in values defined on the dense set of dyadic real numbers. In case the values generated from any
f by this process converge uniformly at the dyadic points to values of a continuous function, we term the subdivision
scheme convergent, see e.g., [19]. A necessary and sufficient condition for the convergence of a subdivision scheme is that
the sequence PLk, k ∈ N, consists of piecewise linear interpolants to each kth refined data {(i2−k, (Skf )i) | i ∈ Z}, is a
Cauchy sequence in the uniform norm. We denote the limit of a convergent subdivision scheme, with the refinement rules
S, generated from the initial data f by S∞(f).

A linear univariate subdivision S is defined by the refinement rules,

S(f)j =


i∈Z

aj−2ifi, j ∈ Z, (1)
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