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a b s t r a c t

We propose and discuss a new computational method for the numerical approximation
of reachable sets for nonlinear control systems. It is based on the support vector machine
algorithm and represents the set approximation as a sublevel set of a function chosen in
a reproducing kernel Hilbert space. In some sense, the method can be considered as an
extension to the optimal control algorithm approach recently developed by Baier, Gerdts
andXausa. The convergence of themethod is illustrated numerically for selected examples.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The numerical computation of reachable sets is a crucial topic in nonlinear control theory and the quantification of
deterministic uncertainty in dynamical systems. Collision avoidance of manned and unmanned vehicles is one particular
application that currently attracts a lot of attention (see e.g. [1] and the references therein). Standard techniques such as the
set-valued Euler method [2,3] evolve a grid-based approximation of the reachable set along the relevant time interval. They
are subject to the curse of dimensionality, and there is a high degree of redundancy in the computations they carry out.

Recently, a version of the set-valued Euler method was presented in [4] that tracks the boundaries of the reachable sets
and uses only the boundaries of the right-hand side of the differential inclusion. With this approach, the complexity of the
Euler scheme is reduced drastically in the low-dimensional setting, but only marginally in higher dimensions.

The DFOG optimal control algorithm [5], which will be discussed in more detail in Section 2.3, is another recent attempt
to reduce the proportion of irrelevant computations. Every point of a grid in the relevant region of the phase space is
projected to the reachable set by solving aMayer problem. From this data, one can derive – at least theoretically – an accurate
description of the reachable set. In contrast to traditional methods, there is no guarantee that the numerical optimisation
routine finds a global minimum, and therefore, the algorithm is, strictly speaking, unstable. Numerical studies, however,
support the usefulness of this method.

The backward reachable set of a given target set is the set of all points from which the target can be reached before (and
not at) a certain time. It is therefore not exactly the kind of reachable set we consider. A modification of the viability kernel
algorithm presented in [6] can be used to compute such sets. It is also natural to characterise backward reachable sets as
sublevel sets of the minimal time function, which is the unique viscosity solution of a Hamilton Jacobi equation associated
with the dynamics, see [7,8].
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In this paper, we propose a new approach to the calculation and representation of a reachable set approximation,
motivated as an extension to the DFOG algorithm for reachable sets with nonempty interior (see Remark 4.1 for justification
of this assumption). The extension consists of using the results of these optimal control problems to search for a function
in a particular function space, so that the reachable set is represented as a sublevel set of this function. The function space
under consideration is a reproducing kernel Hilbert space (RKHS), and the algorithm to search for this function is an adapted
support vector machine (SVM) algorithm.

Our algorithm has the advantage that it is robust to a small number of errors made by the optimisation routines from
the DFOG method. In addition, the function used for the reachable set approximation has a sparse representation in terms
of the optimal control results, and the algorithm focuses on information provided by points that are close to the boundary
of the reachable set.

2. Reachable sets and known techniques for their approximation

In the following, we give a condensed overview over basic properties of reachable sets (see Section 2.1), the currently
most common numerical methods for approximating them (see Section 2.2) and the DFOGmethod (see Section 2.3), which
is the basis of our new method.

We recall some standard definitions with regard to set representations.

Definition 2.1. Let A, B ⊂ Rd be compact sets, and x ∈ Rd. The distance of a point x to the set A is defined by

dist(x, A) := infa∈A∥x − a∥.

For any r > 0, the r-neighbourhood of A is the set

B(A, r) := {z ∈ Rd
: dist(z, A) ≤ r}.

The projection of x to A is the set of points in A that realise the infimum distance to x, i.e.

Proj(x, A) := {a ∈ A : ∥x − a∥ = dist(x, A)}.

The Hausdorff semi-distance between sets A and B is given by

d(A, B) := supa∈A dist (a, B),

and the Hausdorff distance between A and B is given by

dH(A, B) := max{d(A, B), d(B, A)}.

Throughout this paper, the symbol ∥ · ∥ denotes the Euclidean norm. The symbols ∥ · ∥∞, dist∞(x, A) etc. denote the
corresponding concepts based on the maximum norm.

2.1. Reachable sets

Let U be a nonempty convex and compact subset of Rd and

U :=

u ∈ L∞([t0, T ], Rd) : u(t) ∈ U for almost all t ∈ [t0, T ]


for fixed times t0 < T . We consider the nonlinear control problem

ẋ(t) = g(t, x(t), u(t)), u ∈ U, (2.1a)
x(t0) = x0, (2.1b)

for some x0 ∈ Rd, where (2.1a) holds for almost every t ∈ [t0, T ] and x(·) ∈ W 1,∞([t0, T ], Rd) is absolutely continuous. We
are interested in the reachable set at time T , given by

R(T , t0, x0) := {x(T ) : x(·)solves (2.1)}.

Problem (2.1) is equivalent to the differential inclusion

ẋ(t) ∈ G(t, x(t)) (2.2a)
x(t0) = x0, (2.2b)

with (2.2a) valid for almost all t ∈ [t0, T ], and G(t, x) :=


u∈U {g(t, x, u)}.
Reachable sets of nonlinear control systems, or, equivalently, nonlinear differential inclusions, are, in general, nonconvex.

It is, however,well-known, that they enjoy several favourable properties undermild assumptions imposed on the right-hand
side (see e.g. [9, Corollary 7.1] and [10]):
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