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a b s t r a c t

Since digital images are usually sparse in thewavelet frame domain, some nonconvexmin-
imization models based on wavelet frame have been proposed and sparse approximations
have been widely used in image restoration in recent years. Among them, the proximal al-
ternating iterative hard thresholdingmethod is proposed in this paper to solve the noncon-
vex model based on wavelet frame. Through combining the proposed algorithm with the
iterative hard thresholding algorithm which is well studied in compressed sensing theory,
this paper proves that the complexity of the proposed method is O(1/

√
k). On the other

hand, a more general nonconvex–nonsmooth model is adopted and the pseudo proximal
alternating linearizedminimizationmethod is developed to solve the above problem.With
theKurdyka–Łojasiewicz (KL) property, it is proved that the sequence generated by the pro-
posed algorithm converges to some critical points of the corresponding model. Finally, the
proposed method is applied to restore the blurred noisy gray images. As the numerical re-
sults reveal, the performance of the proposed method is comparable or better than some
well-known convex image restoration methods.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

This paper will study how to restore the digital images corrupted by the given blur operators and white Gaussian noise.
Mathematically speaking, if the columns of a digital image are stacked one by one, the digital image can be regarded as a
column vector x = (x1, x2, . . . , xn)T ∈ Rn. The generic image restoration problem can be formulated as a linear inverse
problem accordingly. Namely, an observed degraded digital image b in Rm is given by

b = Ax̂ + w,

where A ∈ Rm×n is a known linear blur operator; w denotes white Gaussian noise with variance σ 2 and x̂ is the unknown
true image. For the given vector x, ∥x∥0 denotes the number of nonzero entries. Although ∥ · ∥0 is not a norm, it is still called

✩ This work is supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No. LY15A010020, the Key project of NSF of China
under number 11531013, the Science Foundation of Zhejiang Sci-Tech University under Grant 1113834–Y, the Key Laboratory of Oceanographic Big Data
Mining & Application of Zhejiang Province under Grants No. OBDMA201505 and the Open Foundation fromMarine Sciences in theMost Important Subjects
of Zhejiang under Grant No. 111040602136.
∗ Corresponding author.

E-mail addresses: kiraofsin@yahoo.co.jp (F. Yang), yshen@zstu.edu.cn (Y. Shen), liuzhisong@zjou.edu.cn (Z.S. Liu).

http://dx.doi.org/10.1016/j.cam.2016.07.013
0377-0427/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2016.07.013
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2016.07.013&domain=pdf
mailto:kiraofsin@yahoo.co.jp
mailto:yshen@zstu.edu.cn
mailto:liuzhisong@zjou.edu.cn
http://dx.doi.org/10.1016/j.cam.2016.07.013


116 F. Yang et al. / Journal of Computational and Applied Mathematics 311 (2017) 115–129

as l0-norm for convenience. As usual, ∥x∥1 =
n

i=1 |xi| denotes the l1-norm and ∥x∥ =

n
i=1 x

2
i denotes the l2-norm. This

paper considers recovering the unknown image by solving the following l0 minimization model:

min
x,y

Ψ0(x, y) :=
1
2
∥Ax − b∥2

+ λ∥y∥0 +
η

2
∥DTx − y∥2, (1.1)

where D is a given matrix and DT denotes its transpose, while I ∈ Rn×n is assumed to be the identity matrix. This paper
mainly regards D ∈ Rn×d as a tight frame, which means DDT

= I. Usually, the number of the columns d is larger than
that of the rows n, indicating D is a redundant system in Rn. Natural images are often sparse with respect to tight wavelet
frames. Hence, the regularization term used formodels based onwavelet frame can be the l0-norm or l1-norm of thewavelet
frame coefficients. Other nonconvex image restoration models based on wavelet frame can be found in [1–4] and referred
therein. The minimization model (1.1) is solved in [4,5] via the block coordinate descent (BCD) method. Roughly speaking,
the first step of the BCD method is deconvoluting in the pixel domain and the second step is denosing in the frame domain.
It is proved in [5] that the sequence generated by the BCD method is bounded, which motivates the authors to propose a
new method to generate a convergent sequence as below,

xk+1
= argmin

x

1
2
∥Ax − b∥2

+
η

2
∥DTx − yk

∥
2,

yk+1
∈ argmin

y
λ∥y∥0 +

η

2
∥y − DTxk+1

∥
2
+

dk
2

∥y − yk
∥
2,

k = 0, 1, 2, . . . , (1.2)

where dk refer to positive real numbers. The initial value y0 is set 0. If all dk are set 0, the iterative scheme (1.2) will turn
to be the BCD method. The second step of the iterative scheme (1.2) can be connected with the iterative hard thresholding
method in [6]. Therefore, the proposed method in this study is called as Proximal Alternating Iterative Hard Thresholding
(PAIHT)method. To study the convergence properties of the PAIHTmethod, more general nonconvex–nonsmooth problems
of the form will be considered

min
x,y

Ψ (x, y) := f (x) + g(y) + H(x, y). (1.3)

If

f (x) =
1
2
∥Ax − b∥2, g(y) = λ∥y∥0 and H(x, y) =

η

2
∥DTx − y∥2,

then it is easy to observe that the minimization model (1.1) is a special case of the minimization model (1.3). If the
functions f (x) and g(y) are both semi-continuous, and the function H(x, y) is smooth, then the sequence generated by
the proximal alternating linearized minimization algorithm [7] is convergent with the Kurdyka–Łojasiewicz (KL) property.
Motivated by these works on the KL property, and based on the image restoration model (1.1), this paper explores the
nonconvex–nonsmooth minimization problem (1.3) under different situations. For instance, the function f (x) is convex;
the function g(y) is semi-continuous and the function H(x, y) is strongly convex. Subsequently, a new iterative scheme is
established for solving the problem (1.3) approximately under the new settings. More specifically, the iteration scheme for
solving (1.3) is given by

xk+1
= argmin

x
H(x, yk) + f (x),

yk+1
∈ argmin

y
⟨∇yH(xk+1, yk), y − yk

⟩ + g(y) +
dk
2

∥y − yk
∥
2,

(1.4)

where dk refer to positive real numbers. Since the direct convex method is applied to solve the first subproblem of the
iterative scheme (1.4), it is called the Pseudo Proximal Alternating Linearized Minimization (PPALM) method.

The rest of this paper is organized as follows. In Section 2, some notations and propositions are introduced and some
technical results on nonconvex programming are also included. In Section 3.1, the PAIHTmethod is proved to be sublinearly
convergent. In Section 3.2, the PAIHT method is connected with the PPALM method. Then the convergence analysis of the
PPALM method is applied to discuss the convergence properties of the PAIHT method. In Section 4, the comparison results
of the proposed iterative algorithms with the BCDmethod in [5] are reported, and then the image restoration model (1.1) is
compared with two convex wavelet frame image restoration models. Some conclusions are given in Section 5.

2. Some preliminaries

This section reviews some notations and propositions. The support of a given vector x = (x1, . . . , xn)T is defined by

S(x) := {i : xi ≠ 0}.

Let σ : Rn
→ R ∪ {+∞} be a proper and lower semicontinuous function, then the domain of σ is defined by

dom σ := {x ∈ Rn
: σ(x) < +∞}.
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