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a b s t r a c t

In this paper, we consider the distribution of life length of a series system with random
number of components, say M . Considering the distribution of M as COM–Poisson,
a Weibull–COM–Poisson distribution (WCOMP) is developed. The COM–Poisson is a
generalization of the Poisson distribution having one extra parameter. The structural
properties of the resulting distribution are presented and the maximum likelihood
estimation of the parameters is investigated. Extensive simulation studies are carried out
to study the performance of the estimates. A score test is developed to test the importance
of the extra parameter. For illustration, three real data sets are examined and it is shown
that the WCOMP model, presented here, fits better than the exponential Poisson and the
exponential-COMP distributions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In life testing and survival analysis, sometimes the components are arranged in series or parallel system and the number
of components is initially unknown. In the competing risk analysis, the individual times of events are unknown, but we
observe T = min(Y1, Y2, . . . , YM) where Y1, Y2, . . . , YM are independent, identically distributed random variables andM is
considered as random. The distribution of the life length of series and parallel system with random number of components
has been studied by various authors. For example, suppose for a patient,M denotes the number of carcinogenic cells (often
called clonogens) left active after the first treatment and let M have a discrete distribution having mass at {1, 2, 3, . . .}.
Let Yi, i = 1, 2, . . . ,M denote the incubation time for the ith clonogenic cell. For a given M ≥ 1, we assume that one
(all) out of M latent factors need to activate for the subjects to fail. Then the time to fail is T = min(Y1, Y2, . . . , YM) or
T = max(Y1, Y2, . . . , YM). Cooner et al. [1] call such system as series (parallel) system, the first (last) activation scheme. See
also Ibrahim et al. [2].

In cure rate models, in addition to the individuals who are uncured, the interest is in estimating the probability of cure,
called the cure rate. In that case M is also allowed to take the value 0. In the last ten years, there has been a considerable
interest in studying the cure rate models from different angles. The reader is referred to Borges et al. [3], Rodrigues et al. [4],
Rodrigues et al. [5], Fonseca et al. [6], Balakrishnan and Pal [7,8], Peng and Xu [9] and Cancho et al. [10].

In the literature various distributions of M have been considered. Cooner et al. [1], Chen et al. [11], Kus [12] and
Karlis [13] have considered the distribution of M as Poisson. Cordeiro et al. [14] and Rodrigues et al. [4] studied the
resulting model where M has a Conway–Maxwell–Poisson (COMP) distribution. The COMP distribution is a generalization
of the Poisson distribution having one more parameter which allows for underdispersion or overdispersion. Tahmasbi
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and Rezaei [15] considered the above model having logarithmic series distribution. More generally, Morais and
Barreto-Souza [16] considered the distribution ofM as power series.

The aim of the paper is to provide an alternative model to analyze survival data. More precisely, in cancer studies, the
number of carcinogenic cells left active after the treatment is unknown and hence this number has to be modeled by
an appropriate discrete distribution. In most of the studies, Poisson distribution has been used to model this unknown
number. The validity of this rationale was questioned by several authors including Tucker et al. [17]. Replacing the Poisson
distribution by COMP distribution provides a more flexible model because the COMP distribution takes care of both the
overdispersion and the underdispersion. On the other hand, in the case of Poisson distribution, the dispersion parameter is
unity, an assumption which is not satisfied in most cases.

Thus, in the presentwork,we shall consider the distribution ofM as COM–Poisson (COMP),which is a generalization of the
Poisson distribution having one more parameter. Also, we replace the exponential distribution with a Weibull distribution
resulting in a more flexible model having decreasing, increasing and upside bath tub shaped distribution depending on the
shape parameter of the Weibull distribution. Our model will be compared to Kus [12] and Cordeiro et al. [14] models in
terms of fitting and other characteristics. The probability function of the COMP distribution is given by

P(M = j; λ, ν) =
λj

Z(λ, ν)(j!)ν
, j = 0, 1, . . . , (1.1)

where Z(λ, ν) =


∞

j=0 λj/(j!)ν, λ > 0, ν > 0. Note that the probability mass function of the COMP distribution is log-
concave and hence it has an increasing failure rate. Thus, our model is a generalization of Kus [12] model in two directions.
We replace the baseline exponential distribution by aWeibull distribution and Poisson distribution by a COMP distribution
resulting in two more parameters. It is also an extension of Cordeiro et al. [14] model.

The maximum likelihood estimation of the parameters is studied. Rao’s score test is developed to test the importance
of the additional parameters γ and ν. Three examples are presented to illustrate the procedure and support the model.
The paper is organized as follows: In Section 2, we develop the model and derive the survival function. Some structural
properties of the model are also studied. In Section 3, the maximum likelihood estimation of the parameters is considered.
A score test, for testing the importance of the additional parameters ν and γ , is developed. We illustrate the flexibility of
the proposed model in Section 4 using three data sets which demonstrate the importance of the additional parameters.
Simulation studies are carried out in Section 5 to investigate the performance of the estimates. Finally, in Section 6, some
conclusion and comments are presented.

2. Derivation of the WCOMPmodel

2.1. The WCOMP distribution

The exponential-Poisson (EP) distribution was introduced by Kus [12], which compounds an exponential distribution
with a Poisson distribution. The Conway–Maxwell–Poisson (COMP) distribution, discussed recently by Shmueli et al. [18],
Lord et al. [19] and Seller and Shmueli [20], generalizes the Poisson distribution allowing for under-dispersion as well as
over-dispersion. The COMP distribution with parameters λ > 0 and ν ≥ 0, say COMP(λ, ν), has probability mass function
(pmf) given by (1.1).

Cordeiro et al. [14] presented an extension of Kus [12] by compounding an exponential distribution with the COMP
distribution and defined a three parameter distribution referred to as the exponential-Conway–Maxwell–Poisson (ECOMP)
distribution. We have also replaced the exponential distribution by a Weibull distribution. So, in this paper, we present the
Weibull Conway–Maxwell–Poisson (WCOMP) distribution which includes the EP and the ECOMP models as special sub-
models.

Let the discrete random variableM in (1.1) be zero truncated with pmf written as

P(M = j; λ, ν) =
λj

[Z(λ, ν) − 1] (j!)ν
, j = 0, 1, . . . (2.1)

Suppose that {Yi}
M
i=1 are independent and identically distributed (iid) random variables having theWeibull distribution, say

W (β, γ ), with scale parameter β > 0 and shape parameter γ > 0. The density function ofW (β, γ ) is given by

fW (x; β, γ ) = γ βγ xγ−1e−(βx)γ , x > 0.

We assume that the random variables, Y ′

i s, are independent ofM . The random variable X = min {Yi}
M
i=1 defines theWCOMP

distribution, denoted by WCOMP(β, λ, ν, γ ), for which the conditional density function of X (given M = j) is given by
f (x|j; β, γ ) = βγ j(βx)γ−1e−(βx)γ j. Thus, the WCOMP distribution can be used to model the minimum lifetimes of Weibull
random variables.

The marginal probability density function (pdf) of X becomes

f (x; θ) =
βγ (βx)γ−1

Z(λ, ν) − 1

∞
j=1

j

λe−(βx)γ

j
(j!)ν

, x > 0 (2.2)
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