
Journal of Computational and Applied Mathematics 311 (2017) 205–214

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Operational Tau method for singular system of Volterra
integro-differential equations
S. Pishbin
Department of Mathematics, Faculty of Sciences, Urmia University, Urmia, P.O. Box 165, Iran

a r t i c l e i n f o

Article history:
Received 5 September 2015

MSC:
65R20
45F15
45J05

Keywords:
Singular system of Volterra
integro-differential equations

υ-smoothing Volterra operator
Legendre spectral Tau methods
Error analysis

a b s t r a c t

The Legendre spectral Tau matrix formulation is proposed to approximate solution of
singular system of Volterra integro-differential equations. The existence and uniqueness
solution of this system are investigated bymeans of theυ-smoothing property of a Volterra
integral operator and some projectors. The L2−convergence of the numerical method
is analyzed. It is proved theoretically and demonstrated numerically that the proposed
method converges exponentially. Finally, two numerical examples illustrate the theoretical
results.
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1. Introduction

System of integro-differential equations arise in many mathematical modeling processes such as population growth,
one dimensional viscoelasticity and reactor dynamics [1–4]. Singular systems of Volterra integro-differential equations or
Volterra integro-differential–algebraic equations (IDAEs) are encountered as a differential–algebraic system together with
an integral operator which arise in modeling nonlinear electric chains with after-effect [5,6]. In this paper, we consider
numerical method for solving the singular systems of Volterra integro-differential equations in the following form:

L[X(t)] = A(t)X ′(t) + B(t)X(t) +

 t

0
K(t, s)X(s)ds = f (t), X(0) = X0, (1.1)

with t ∈ Ω = [0, 1] and f : Ω → Rd(d ≥ 1). A(t) and B(t) are given d × d matrices. K(t, s) is the kernel matrix defined in
the domain D = {(t, s) : 0 ≤ s ≤ t ≤ 1} and X : Ω → Rd is the unknown function. We assume that Rank(A) ≥ 1 and

detA(t) = 0, ∀t ∈ Ω.

The semi-explicit form of the system (1.1) can be described by

A(t) = dig(Id1 ,Od2), d1 + d2 = d.

An initial investigation of these equations indicates that they have properties very similar to differential–algebraic
equations (DAEs) [7–13]. If in system (1.1), K(t, s) ≡ 0, then we have a linear DAE system. In other words, we can consider
linearDAEs as a special formof IDAEs (1.1). Also, it can be shown that IDAE systemhas properties similar to integral-algebraic
equations (IAEs). Author, refers the interested reader to [14–24] for more research works on the IAE systems.

E-mail address: s.pishbin@urmia.ac.ir.

http://dx.doi.org/10.1016/j.cam.2016.07.017
0377-0427/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2016.07.017
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2016.07.017&domain=pdf
mailto:s.pishbin@urmia.ac.ir
http://dx.doi.org/10.1016/j.cam.2016.07.017


206 S. Pishbin / Journal of Computational and Applied Mathematics 311 (2017) 205–214

The study of implementation of implicit Runge–Kutta methods of Pouzet-type for singular systems of Volterra integro-
differential equations has been provided by Kauthen [25]. He studied the convergence properties of this numerical method
as fully discretized collocation method. Brunner [14] analyzed global and local superconvergence of piecewise polynomial
collocation solutions for the semi-explicit index-1 IDAEs. Bulatov [26,27] considered a class of first-order integro-differential
equations with a degenerate matrix multiplying the derivative and suggested a numerical solution method based on Euler’s
implicit method together with a quadrature formula using left rectangles. Also the multistep method to solving a certain
class of IDAEs has been provided by Bulatov and Chistyakova [28].

The present paper is devoted to the study of numerical solvability of the integro-differential–algebraic equations (1.1).
For this aim, in Section 2, using the υ-smoothing property of a Volterra integral operator and some projectors, we decouple
the IDAEs (1.1) into the mixed system of Volterra integro-differential equations (VIDEs) and integral equations (VIEs), and
then investigate the existence and uniqueness solution of the obtained system. In Section 3, the operational Tau method
as well-known method is applied to approximate the solution of IDAE system (1.1). Convergence analysis of the proposed
numerical method is investigated in Section 4 and in Section 5, the results of numerical experiments are compared with
analytical solution and with those of other recently published methods to confirm the accuracy and efficiency of the new
scheme which is presented in this paper.

2. Existence and uniqueness solution

In this section, we firstly use the υ-smoothing property of a Volterra integral operator and some projectors to decouple
the system (1.1) into the inherent system of Volterra integro-differential equations (VIDEs) and a system of Volterra integral
equations (VIEs), and then the construction of solution of the system (1.1) is introduced by the existence and uniqueness
theorem.

Definition 1 ([20]). The Volterra integral operator in (1.1) corresponding to the kernel matrix K(t, s) =


kpq(t, s)

p, q = 1, . . . , d


, with

d ≥ 2, is said to be υ-smoothing if there exist integers υpq ≥ 1with υ = max1≤p,q≤d{υpq} such that the following conditions
hold:

(1) ∂ ikpq(t,s)
∂t i

|s=t = 0, t ∈ Ω, i = 0, . . . , υpq − 2,

(2) ∂υpq−1kpq(t,s)
∂tυpq−1 |s=t ≠ 0, t ∈ Ω ,

(3) ∂υpq kpq(t,s)
∂tυpq ∈ C(D).

We set υpq = 0 when kpq(t, s) ≡ 0.

Now, let the Volterra integral operator in (1.1) be 1-smoothing and K = K(t, t), we rewrite system (1.1) as:

A(t)(P(t)X(t))′ + B1(t)(P(t)X(t) + Q (t)X(t)) + V + W = f (t), (2.1)

where Q (t) denotes a projector onto ker A(t), P(t) = I − Q (t), Q (t)2 = Q (t), B1(t) = B(t) − A(t)P ′(t) and

V =

 t

0
K(t, s)P(s)X(s)ds, W =

 t

0
K(t, s)Q (s)X(s)ds.

Also, system (2.1) can be rewritten as

A1(t)

P(t)(P(t)X(t))′ + Q (t)X(t)


+ B1(t)P(t)X(t) + V + W − KQ (t)X(t) = f (t), (2.2)

where A1(t) = A(t) + B1(t)Q (t) + KQ (t). Let u = P(t)X(t), v = Q (t)X(t) and det(A1(t)) ≠ 0, ∀t ∈ Ω . Multiplying (2.2)
by P(t)A−1

1 (t) and Q (t)A−1
1 (t), respectively, we have the following mixed system of Volterra integro-differential equations

and Volterra integral equations
u′

+ B2(t)u + B3(t)v +

 t

0
K̄(t, s)u(s)ds +

 t

0
K̄(t, s)v(s)ds = g1(t),

B4(t)v + B5(t)u +

 t

0
K̂(t, s)u(s)ds +

 t

0
K̂(t, s)v(s)ds = g2(t),

(2.3)

where B2(t) =


P(t)A−1

1 (t)B1(t)−Q (t)P ′(t)

, B3(t) =


−P(t)A−1

1 (t)K−Q (t)P ′(t)

, B4(t) =


I−Q (t)A−1

1 (t)K

, B5(t) =

Q (t)A−1
1 (t)B1(t), K̄(t, s) = P(t)A−1

1 (t)K(t, s), K̂(t, s) = Q (t)A−1
1 (t)K(t, s), g1(t) = P(t)A−1

1 (t)f (t) and g2(t) =

Q (t)A−1
1 (t)f (t).

If B4(t) be invertible, then differentiating from the second equation of (2.3) and inserting u′ from the its first equation
and some manipulations, lead to the following second-kind integro-differential equation

v′
+ B̃6(t)u + B̃7(t)v +

 t

0
K̃(t, s)u(s)ds +

 t

0
K̃(t, s)v(s)ds = g̃2(t), (2.4)

where the meaning of B̃6(t), B̃7(t), K̃(t, s) and g̃2(t) is clear.
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