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a b s t r a c t

This paper considers the expected penalty functions for a discrete semi-Markov risk model
with randomized dividends. Under the model, individual claims are governed by a Markov
chain with finite state space, and the insurer pays a dividend of 1 with a probability at
the end of each period if the present surplus is greater than or equal to a threshold value.
Recursive formulae and the initial values for the discounted free penalty functions are
derived in the two-state model. A numerical example is provided to illustrate the impact
of dividend payments on ruin probabilities.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Survival probability in a semi-Markov riskmodel was first investigated by Janssen and Reinhard [1], in which the surplus
process not only depends on the current state but also on the next state of an environmental Markov chain. Recently,
Albrecher and Boxma [2] generalized the approach of Janssen and Reinhard [1] and studied the corresponding discounted
penalty function by means of Laplace–Stieltjes transforms. Cheung and Landriault [3] further investigated the problem of
Albrecher and Boxma [2] by relaxing some assumptions pertaining to the interclaim time distribution.

For the discrete-time semi-Markov risk model with a restriction imposed on the total claim size, Reinhard and Snoussi
[4,5] derived recursive formulae for the distribution of the surplus just prior to ruin and that of the deficit at ruin in a special
case. Chen et al. [6,7] relaxed the restriction of Reinhard and Snoussi [4,5] and derived recursive formulae for computing
the expected discounted dividends and survival probabilities for the model. As was mentioned in [7], the discrete-time
semi-Markov risk model without restriction embraces some existing discrete-time risk models including the compound bi-
nomialmodel (with time-correlated claims) and the compoundMarkov binomialmodel (with time-correlated claims)which
have been extensively studied by various authors; see, for example, Cossette et al. [8,9], Yuen andGuo [10], Xiao andGuo [11]
and references therein. This motivates us to carry out further ruin analysis for the discrete-time semi-Markov risk model.

The randomized dividend strategy was studied by Tan and Yang [12], Bao [13], Landriault [14], He and Yang [15], and
Yuen et al. [16], for the compound binomial model. Under this dividend payment strategy, the insurer pays a dividend of 1
with probability 1 − α when the surplus is greater than or equal to an arbitrary given non-negative integer x. In this paper,
we incorporate randomized dividends into the discrete-time semi-Markov risk model of Chen et al. [6,7], and examine the
corresponding discounted free Gerber–Shiu penalty function.

The rest of the paper is organized as follows. In Section 2, we present the mathematical formulation of the discrete
semi-Markov model with randomized dividends. In Section 3, we derive recursive formulae for computing the discounted
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free Gerber–Shiu penalty function for the model. In Section 4, we obtain two important equations for determining the
required initial values when applying the recursive formulae. Sections 5 and 6 are devoted to finding the initial values
for the case with x = 0. Finally, a numerical example is given in Section 7.

2. The risk model

Let (Jn, n ∈ N) be a homogeneous, irreducible and aperiodic Markov chain with finite state space M = {1, . . . ,m}

(1 ≤ m < ∞). Its one-step transition probability matrix is given by

P = (pij)i,j∈M , pij = P(Jn = j|Jn−1 = i, Jk, k ≤ n − 1),

with a unique stationary distribution π = (π1, . . . , πm). The insurer’s surplus (without paying dividends) at the end of the
tth period, Xt , has the form

Xt = u + t −

t
i=1

Yi, t ∈ N+, (1)

where u ∈ N is the initial surplus and Yi denotes the total amount of claims in the ith period. We further assume that
a premium of 1 is received at the beginning of each time period, and that Yt ’s are nonnegative integer-valued random
variables. The distribution of Yt ’s is governed by the environmental Markov chain (Jn, n ∈ N) in the way that (Jt , Yt ) depends
on {Jk, Yk; k ≤ t − 1} only through Jt−1. Define

gij(l) = P(Yt = l, Jt = j|Jt−1 = i, Jk, Yk, k ≤ t − 1), l ∈ N,

whichdescribes the conditional joint distribution ofYt and Jt given the previous state Jt−1 andplays a key role in the following
derivations. Note that pij =


∞

l=0 gij(l). We refer the readers to Reinhard and Snoussi [4,5] for more details about the model.
We nowmodify the surplus process (1) by allowing dividend payments. Specifically, we assume that the insurer will pay

a dividend of 1 with probability 1− α at the end of each period if the present surplus is greater than or equal to a threshold
value x ∈ N. Then the modified surplus at the end of the tth period is given by

Ut = u + t −

t
i=1

Yi −

t
i=1

γi1(Ui−1≥x), t ∈ N+, (2)

where 1A is the indicator function of event A and γi is a series of i.i.d. random variables that are independent of Yi with
P(γi = 0) = α > 0 and P(γi = 1) = 1 − α.

Let τ = inf{t ∈ N+ : Ut < 0} be the time of ruin. The Gerber–Shiu expected discounted penalty function given the initial
surplus u and the initial environment state i is defined as

mi(u) = E(vτω(Uτ−, |Uτ |)1(τ<∞)|U0 = u, J0 = i), i ∈ M, u ∈ N, (3)

where ω(x, y) is a nonnegative bounded function and 0 < v ≤ 1 is the discounted factor. If v = 1 and ω(x, y) ≡ 1, then
mi(u) becomes

ψi(u) = P(τ < ∞|U0 = u, J0 = i), i ∈ M, u ∈ N,

which is the ultimate ruin probability given the initial surplus u and the initial environment state i. Let φi(u) = 1 − ψi(u)
be the corresponding survival probability.

For all i and j, we assume that

µij =

∞
k=0

kgij(k) < ∞,

and define

µi =

m
j=1

µij, i ∈ M.

Here we consider the following positive safety loading condition for the model
m
i=1

πiµi < 1 − (1 − α) = α,

which ensures that ruin is not certain.
In this paper, we only consider the case with v = 1 and m = 2. Our aim is to derive a recursive formula for computing

mi(u).
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