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a b s t r a c t

In this paper,wewill seek the least squares solution for singular saddle-point problems. The
parameterized Uzawa (PU) method is further studied and a generalized PU (GPU) proper
splitting is proposed. The convergence behavior of the corresponding GPU iteration is stud-
ied. It is proved that the GPU iteration method can converge to the best least squares
solutions of the singular saddle-point problems. In addition, we prove that the GPU precon-
ditioned GMRES for singular saddle-point problems will also determine the least squares
solution at breakdown. The eigenvalue distributions of the GPU preconditioned matrix are
derived. Numerical experiments are presented, which show that the convergence behavior
of the singular preconditioning is significantly better than that of the corresponding non-
singular case and demonstrate that the GPU iteration has better convergence behavior than
the PU iteration, both as a solver and a preconditioner of GMRES.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Consider the singular saddle-point problem:

A X ≡


A B

−BT 0


x
y


=


f

−g


≡ c, (1.1)

where A ∈ Rn×n is a positive real matrix, i.e., the symmetric part of A is positive definite, B ∈ Rn×m is a rank deficient matrix
with m < n, f ∈ Rn and g ∈ Rm are two given vectors. Many different scientific and engineering applications can derive
linear systems of the structure (1.1), for example themixed finite element approximation of elliptic PDEs, the computational
fluid dynamics, the electronic networks, the image reconstruction and registration, and so forth. See [1–5] and the references
therein.

For nonsingular saddle-point problems of the form (1.1), a number of iterative methods have been proposed, such as the
Uzawa-type methods [6–11], the HSS-like methods [12–17], the null space methods [18,19], the Krylov subspace methods
and the preconditioned variants [20–26], and so on.

If B of (1.1) is rank deficient, then A of (1.1) is singular. For example, in the finite difference discretization of the
Navier–Stokes equation with periodic boundary conditions, B in (1.1) becomes singular. Some authors have studied many
iterative methods [27–38] for solving singular saddle-point problems. If an iteration method for solving (1.1) is convergent,
it is critical to seek which solution of (1.1) it will converge to, as it may have countless solutions. However, as far as we know
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that the iterative methods for solving singular linear systems in the literature mainly showed concern for the convergence
or semi-convergence, instead of which solution the iterative sequences will converge to.

In this paper, we will seek the least squares solution (generalized inverse solution) A Ďc for the singular saddle-point
problem (1.1), where A Ď is the Moore–Penrose inverse of A , which satisfies the following Moore–Penrose equations
[39,40]:

A A ĎA = A , (A A Ď)T = A A Ď, (A ĎA )T = A ĎA , A ĎA A Ď
= A Ď. (1.2)

In [10], Bai et al. presented the following PU method for solving nonsingular saddle-point problems.
The PU iteration method: Let A ∈ Rn×n and Q ∈ Rm×m be symmetric positive definite matrices. Given initial vectors
x(0)

∈ Rn, y(0)
∈ Rm, and two relaxation factors ω, τ with ω, τ ≠ 0, for k = 0, 1, 2, . . . until the iteration sequence

{(x(k))T , (y(k))T } converges to the exact solution of the nonsingular saddle-point problem of structure (1.1), compute
x(k+1)

= x(k)
+ ωA−1(f − Ax(k)

− By(k)),

y(k+1)
= y(k)

+ τQ−1(BT x(k+1)
− g).

(1.3)

Here, Q is an approximate matrix of the Schur complement matrix BTA−1B.
Basic convergence theorems of the PU method for nonsingular saddle-point problems have been established in [10].

The choice of the optimal parameters and the corresponding quasi-optimal convergence factor for the PU method were
discussed. In [30], Zheng et al. further proved the semi-convergence of the PU method for singular saddle-point problems.
The optimal iteration parameter and the corresponding optimal semi-convergence factor were also derived. However, the
results in [30] did not involve the convergence behavior of the PU iteration (1.3), i.e., which solution the iteration converges
to is unknown.

In this paper, we will further analyze the PU iteration method and generalize it to a generalized PU (GPU) iteration
method for solving singular saddle-point problems. The focus of our work is the convergence behavior of the GPU iteration,
i.e., we consider which solution of (1.1) the GPU iteration method converges to. We prove that the GPU splitting can result
in a proper splitting and the GPU iteration method converges to the best least squares solution A Ďc of (1.1). Moreover,
when (1.1) is consistent, GMRES with the GPU preconditioner can determine A Ďc at breakdown. Eigenvalue distributions
of the GPU preconditioned saddle-point matrix are given, which are instructive for the implementations of Krylov subspace
methods.

The outline of the paper is organized as follows. In Section 2, the GPU iterationmethod for singular saddle-point problems
is described. In Section 3, we give the convergence analysis of the GPU method. In Section 4, Krylov subspace acceleration
with the GPU preconditioner as well as the eigenvalue properties of the GPU preconditioned matrix are presented. In
Section 5, numerical examples are given to show that the GPU iteration is effective for solving singular saddle-point
problems, both as a solver and a preconditioner of the GMRES method. Some conclusions are drawn in the last section.

Throughout this paper, we denote x∗ as the conjugate transpose of a vector x. I is the identity matrix of proper size. The
minimum and the maximum eigenvalues of a symmetric matrix H are denoted by λmin(H) and λmax(H), respectively. For a
matrix A, rank(A) denotes its rank, ρ(A) denotes its spectral radius. R(A) and N (A) denote the range and the null spaces of
the matrix A, respectively.

2. Generalized parameterized Uzawa method for singular saddle-point problems

For the coefficient matrix A of the singular saddle-point problem (1.1), we make the splitting A = D − L − U , where

D :=


A 0
0 Q


, L :=


0 0
BT 0


, U :=


0 −B
0 Q


and Q ∈ Rm×m is an approximation of the matrix BTA−1B.

Define

Ω :=


ωIm 0
0 τ In


with ω and τ being nonzero real parameters. Then we can give the GPU splitting as A = Mω,τ − Nω,τ , with

Mω,τ = Ω−1(D − ΩL ) =
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τ
Q
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Q

 .

(2.1)

Since Q is an approximation of BTA−1B, we choose Q = BTP−1B with P ∈ Rn×n being a positive real matrix. Thus Q is
singular and symmetric positive semi-definite. Under these situations, Mω,τ is also singular. Then the GPU iteration scheme
can be described as follows:

X (k+1)
= M Ď

ω,τ Nω,τX (k)
+ M Ď

ω,τ c. (2.2)



Download English Version:

https://daneshyari.com/en/article/4637757

Download Persian Version:

https://daneshyari.com/article/4637757

Daneshyari.com

https://daneshyari.com/en/article/4637757
https://daneshyari.com/article/4637757
https://daneshyari.com

