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a b s t r a c t

In this paper, we propose a verified numerical method for obtaining a sharp inclusion of
the best constant for the embedding H1

0 (Ω) ↩→ Lp(Ω) on a bounded convex domain in R2.
We estimate the best constant by computing the corresponding extremal function using
a verified numerical computation. Verified numerical inclusions of the best constant on a
square domain are presented.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider the best constant for the embedding H1
0 (Ω) ↩→ Lp(Ω), i.e., the smallest constant Cp (Ω) that satisfies

∥u∥Lp(Ω) ≤ Cp(Ω) ∥u∥H1
0 (Ω) , ∀u ∈ H1

0 (Ω) , (1)

where Ω ⊂ Rn (n = 2, 3, . . .), 2 < p < ∞ if n = 2, and 2 < p ≤ 2n/(n − 2) if n ≥ 3. Here, Lp (Ω) (1 ≤ p < ∞) is
the functional space of pth power Lebesgue integrable functions over Ω . Moreover, assuming that H1 (Ω) denotes the first
order L2-Sobolev space on Ω , we define H1

0 (Ω) := {u ∈ H1 (Ω) : u = 0 on ∂Ω in the trace sense} with inner product
(·, ·)H1

0 (Ω) := (∇·, ∇·)L2(Ω) and norm ∥·∥H1
0 (Ω) := ∥∇·∥L2(Ω).

Such constants are important in studies on partial differential equations (PDEs). In particular, our interest is in the
applicability of these constants to verified numerical computation methods for PDEs, which originate from Nakao’s [1]
and Plum’s work [2] and have been further developed by many researchers. Such methods require explicit bounds for
the embedding constant corresponding to a target equation at various points within them (see, e.g., [3–7]). Moreover,
the precision in evaluating the embedding constants directly affects the precision of the verification results for the target
equation. Occasionally, rough estimates of the embedding constants lead to failure in the verification. Therefore, accurately
estimating such embedding constants is essential.

It is well known that the best constant in the classical Sobolev inequality has been proposed [8,9] (see Theorem A.1). A
rough upper bound of Cp(Ω) for a bounded domain Ω ⊂ Rn can be obtained from the best constant by considering zero
extension outside Ω (see Corollary A.2). Moreover, Plum [6] proposed another estimation formula that requires not the
boundedness of Ω but an explicit lower bound for the minimum eigenvalue of −∆ (see Theorem A.3), where ∆ denotes
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the usual Laplace operator. Although these formulas enable us to easily compute the upper bound of Cp(Ω), little is known
about the best constant.

In this paper, we propose a numerical method for obtaining a verified sharp inclusion of the best constant Cp (Ω) that
satisfies (1) for a bounded convex domainΩ ⊂ R2. As a verified result, we prove the following theoremby using ourmethod
through a computer-assisted technique:

Theorem 1.1. For the square Ωs = (0, 1)2, the smallest values of Cp (Ωs) (p = 3, 4, 5, 6, 7) that satisfy (1) are enclosed as
follows:

C3 (Ωs) ∈ [0.25712475017618, 0.25712475017620];
C4 (Ωs) ∈ [0.28524446071925, 0.28524446071929];
C5 (Ωs) ∈ [0.31058015094505, 0.31058015094512];
C6 (Ωs) ∈ [0.33384042151102, 0.33384042151112];
C7 (Ωs) ∈ [0.35547994288611, 0.35547994288634].

Remark 1.2. Since it follows from a simple variable transformation that

Cp((a, b)2) = (b − a)
2
p Cp(Ωs), (2)

the values in Theorem 1.1 can be directly used for all squares (a, b)2 (−∞ < a < b < ∞) by multiplying them with
(b − a)2/p. Moreover, these values can be applied to deriving an explicit upper bound of Cp (Ω) for a general domain
Ω ⊂ (a, b)2 by considering zero extension outside Ω , while the precision of the upper bound depends on the shape of
Ω .

Hereafter, we replace the notation Cp (Ω) with Cp+1 (Ω) (1 < p < ∞ if n = 2, and 1 < p ≤ (n + 2)/(n − 2) if n ≥ 3)
for the sake of convenience. The smallest value of Cp+1 (Ω) can be written as

Cp+1 (Ω) = sup
u∈H1

0 (Ω)\{0}
Φ (u) , (3)

where Φ (u) = ∥u∥Lp+1(Ω) / ∥u∥H1
0 (Ω). This variational problem is still the topic of current research (see, e.g., [10,11] and the

references therein).
The boundedness of Cp+1 (Ω) in (3) is ensured by considering zero extension outside Ω (see Corollary A.2). In addition,

it is true that the supremum Cp+1 (Ω) in (3) can be realized by an extremal function in H1
0 (Ω). A proof of this fact is

sketched as follows. Let {ui} ∈ H1
0 (Ω) be a sequence such that ∥ui∥H1

0 (Ω) = 1 and ∥ui∥Lp+1(Ω) → Cp+1(Ω) as i → ∞. The
Rellich–Kondrachov compactness theorem (see, e.g., [12, Theorem 7.22]) ensures that there exists a subsequence {uij} that
converges to some u∗ in Lp+1(Ω). Moreover, there exists a subsequence {uik} ⊂ {uij} that converges to some u′

∈ H1
0 (Ω) in

the weak topology ofH1
0 (Ω) becauseH1

0 (Ω) is a Hilbert space. Since {uik} converges to u∗ in Lp+1(Ω), it follows that u∗
= u′.

Hence, u∗
∈ H1

0 (Ω)(⊂Lp+1(Ω)) and ∥u∗∥Lp+1(Ω) = Cp+1(Ω).
Since |u| ∈ H1(Ω) for all u ∈ H1(Ω) (see, e.g., [12, Lemma 7.6]) and Φ(u∗) = Φ(|u∗

|), we are looking for the extremal
function u∗ such that u∗

≥ 0 (in fact, the later discussion additionally proves that u∗ > 0 inΩ). The Euler–Lagrange equation
for the variational problem is

−1u = lup in Ω,
u = 0 on ∂Ω

(4)

with some positive constant l (see, e.g., [10] for a detailed proof). Since Φ is scale-invariant (i.e., Φ(ku∗) = Φ(u∗) for any
k > 0), it suffices to consider the case that l = 1 for finding an extremal function u∗ of Φ (recall that we consider the case
that p > 1). Moreover, the strong maximum principle ensures that nontrivial solutions u to (4) such that u ≥ 0 in Ω are
positive in Ω . Therefore, in order to find the extremal function u∗, we consider the problem of finding weak solutions to the
following problem:

−1u = up in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

(5)

This problem has a unique solution ifΩ ⊂ R2 is bounded and convex [13]. Therefore, we can obtain an inclusion of Cp+1 (Ω)
as ∥u∗∥Lp+1(Ω) / ∥u∗∥H1

0 (Ω) by enclosing the solution u∗ to (5) with verification.
Numerous numerical methods for verifying a solution to semilinear elliptic boundary value problems exist (e.g., [3–7]

along with related works [14,15]). Suchmethods enable a concrete ball containing exact solutions to elliptic equations to be
obtained; this is typically in the sense of the norms ∥·∥H1

0 (Ω) and ∥·∥L∞(Ω), where L∞ (Ω) is the functional space of Lebesgue
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