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in the concrete example) to minimize the number of iterations on each space.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study Galerkin approximations of strictly monotone problems of the form:
findueX: A(u,v) =0 Vv elX. (1.1)

Here, X is a real Hilbert space, with inner product denoted by (-, -)x and induced norm ||x|| = +/(x, X)x. Furthermore,
A : X x X — R is a possibly nonlinear form such that, for any u € X, the mapping v — A(u, v) is linear and bounded.
Moreover, we suppose that A satisfies

(P1) the strong monotonicity property
A(u,u—v) — A, u—v) > cllu — vl Vu,veX, (P1)

for a constant ¢ > 0, and
(P2) the Lipschitz continuity condition

|Au, w) —A(v, w)| < Llju —vlixlwlx VYu,v, w eX, (P2)

with a constant L > 0.
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Under these assumptions, there exists a unique solution u € X of the weak formulation (1.1); see, e.g., [1, Theorem 2.H]
or [2, §3.3]. In addition, the solution can be obtained as limit of a sequence u°, u', u?, ... € X resulting from the fixed point
iteration

C
WmWXZW%HWx—ﬁﬂwqw)VUGKHZ1, (1.2)

for an arbitrary initial value u® € X. Indeed, defining the contraction constant

k= /1— (CT“)Z (13)

there holds the a priori bound

n

flu—u"lx < Ju —u'llx, n=>1, (14)

~1—k

for theiteration (1.2),i.e., |[u—u"||x = 0; incidentally, under the given assumptions, this contraction constant is minimal;
see, e.g., [2, Theorem 3.3.23].

Restricting the iteration (1.2) to a finite dimensional linear subspace X, C X, leads to an iterative Galerkin approximation
scheme for (1.1). More precisely, we consider, for an initial guess u2 € Xp and n > 1, the iteration

_ Co _
uﬁ € Xy : (uz, Vp)x = (Ll;’l 1, Up)x — L7A (uz 1, Uh) Yoy € Xp, (1.5)
where ¢y and L are the constants from (P1) and (P2), respectively; we note that (P1) and (P2) indeed hold as X;, is a conforming
subspace of X. We emphasize that the problem of finding uj} from uZ’l in the iteration scheme (1.5) is linear and uniquely
solvable. Similarly as for (1.1) and (1.2), the fixed point iteration (1.5) converges to the (unique) solution u, € X; of the
Galerkin formulation

A(uh, Uh) =0 Vvh € Xp. (16)

Furthermore, we note the a priori bound

k"
lun = uhlix = Ty = ugllxs m =1, (17)

analogous to (1.4).

In solving nonlinear differential equations numerically two approaches are commonly employed. Either the nonlinear
problem under consideration is discretized by means of a suitable numerical scheme thereby resulting in a (finite-
dimensional) nonlinear algebraic system, or the differential equation problem is approximated by a sequence of (locally)
linearized problems which are discretized subsequently. The latter approach is attractive from both a computational as well
as an analytical view point; indeed, working with a sequence of linear problems allows the application of linear solvers
as well as the use of a linear numerical analysis framework (e.g., in deriving error estimates). In the context of fixed point
linearizations (1.5) yet another benefit comes into play: solving for uj from uﬁ’l involves setting up and inverting a mass
matrix on the left-hand side of (1.5). We emphasize that this matrix is the same for all iterations; hence, it only needs to be
computed once (on a given Galerkin space).

The idea of approximating nonlinear problems within a linear Galerkin framework has been applied in a variety of works.
For example, in the work [3], a Kacanov fixed-point iteration, whereby any nonlinear terms are expressed by means of a
previously determined approximation, is employed. Furthermore, in the article [4], the authors have considered general
linearizations of strongly monotone operators, and have derived computable estimators for the total error (consisting of
the linearization error and the Galerkin approximation error), with identifiable components for each of the error sources.
A more specific linearization approach for monotone problems, which is based on the Newton method, has been presented
in [5]. In a related context linear finite element approximations resulting from adaptive Newton linearization techniques
as applied to semilinear problems have been investigated in the papers [6,7]. Finally, we remark that the linear Galerkin
approximation approach for nonlinear problems is not only employed for the purpose of obtaining linearized schemes, but
also to address the issue of modeling errors in linearized models; see, e.g. [8,9].

The aim of the current paper is to derive a priori and a posteriori error bounds for the Galerkin iteration method (1.5). Our
error estimates are expressed as the summation of the linearization error resulting from the fixed point formulation with
the Galerkin approximation error. In particular, based on the a posteriori error analysis, we will develop an adaptive solution
procedure for the numerical solution of (1.1) that features an appropriate interplay between the fixed point iterations and
possible Galerkin space enrichments (e.g., mesh refinements for finite elements); specifically, our scheme selects between
these two options depending on whichever constitutes the dominant part of the total error. In this way, we aim to keep the
number of fixed point iterations at a minimum in the sense that no unnecessary iterations are performed if they are not
expected to contribute a substantial reduction of the error on the actual Galerkin space.
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