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a b s t r a c t

The magnetohydrodynamic equations are second order nonlinear partial differential
equationswhich are coupled by fluid velocity andmagnetic fields andwe consider to apply
the Newton’s algorithm to solve them. It is well known that the choice of a proper initial
guess is critical to assure the convergence ofNewton’s iterations in solving nonlinear partial
differential equations. In this paper, we provide a good initial guess for Newton’s algorithm
when it is applied for solving magnetohydrodynamic equations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is known that the magnetohydrodynamic equations have many applications in industry and engineering fields which
may require understanding of plasmas, liquid metals, astrophysical flows and etc. (see [1,2] for example). Further, one
may get a justification of using simplified magnetohydrodynamic equations to model magnetohydrodynamic flows in
terrestrial [3] for example. A reduced stationary magnetohydrodynamic equations with magnetic and electric fields are
studied by finite element approximation in [4,5]. Further, such stationary magnetohydrodynamics equations are extended
to a time-dependent magnetohydrodynamics equations in [6], where two partitioned IMEX methods in finite element
approximation are introduced to solve such an evolutionary magnetohydrodynamic equations. Some works on time-
dependent magnetohydrodynamic may be found in [7,3,6,8–10].

The incompressible magnetohydrodynamic equations considered here, that are second order in the pair of fluid velocity
and magnetic fields, describe the cosmic fluids which carry electric currents and their magnetic fields [11]. By omitting the
displacement current, the magnetohydrodynamics equations can be simplified as

ρ (∂tu + (u · ∇)u) = −∇p − λb × (∇ × b)+ ν1u, ∂tb = ∇ × (u × b)+ η1b,
∇ · u = 0, ∇ · b = 0, (1.1)

where u and b are respective fluid velocity and magnetic fields; ρ is a constant mass density; λ, ν and η are conventional
parameters which are circumstantially described in [11]. Obviously the magnetohydrodynamic equations are composed of
nonlinear partial differential equations and solving this system requires a special treatment.

In this paper, without considering any time and space discretization to solve the targeting magnetohydrodynamic
equations, we are focused on its linearization process. The Newton’s algorithm is one of the most widely used linearization
schemes to solve nonlinear partial differential equations. By using the first Fréchet derivative of a solution operator, it
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linearizes the process and constructs a sequence that is supposed to converge to the exact solution. It is well known
that the initial guess is required to be chosen close enough to the exact solution in order to guarantee the quadratic
convergence of Newton’s iteration [12]. The goal of this paper is to provide a proper initial guess of Newton’s algorithm
for magnetohydrodynamic equations. We first recast the magnetohydrodynamic equations into familiar Navier–Stokes
like equations. It has been studied in a frame work of finite element approximations that proper Stokes equations may
be chosen to search for initial guess (see [13–15]) of the Newton’s iteration for Navier–Stokes equations. Based on these
studies, we then find the corresponding evolutionary Stokes-like equations and construct an approximate solution by
interrelated Galerkin method using a passage to the limit and compactness theorem. The existence and uniqueness of the
evolution Stokes-like equations are shown following the techniques in [12]. At last, we will show that the solution of the
evolution Stokes-like problem is a proper initial guess to guarantee the convergence of Newton’s iteration in solving the
magnetohydrodynamic equations.

2. Magnetohydrodynamic equations in a vector form

The magnetohydrodynamic (MHD) equations with a constant mass density ρ can be described as

∂tu + (u · ∇)u = −∇p − λb × (∇ × b)+ ν1u in Q := Ω × [0, T ] (2.1)
∂tb = ∇ × (u × b)+ η1b in Q (2.2)

∇ · u = 0, ∇ · b = 0 in Q (2.3)

and u(x, t0) = uIC, b(x, t0) = bIC in Ω , u(Γ , t) = ub, b(Γ , t) = bb in [0, T ], where Γ = ∂Ω , u and b are the velocity
and magnetic fields respectively; p is the pressure which is divided by the constant mass density; ν and η are the kinematic
viscosity and the magnetic resistivity, respectively, with λ =

1
µρ

and η =
1
µσ

in which µ is a susceptibility and σ is an
electric conductivity. Here, the spatial domainΩ is an open and bounded Lipschitz set in R3.

According to [11], by introducing new variables
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and
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|
2, (2.5)

the MHD equations in (2.1)–(2.3) can be expressed such that

∂tz+
+ (z−

· ∇)z+
+ ∇q −∆(ν+z+

+ ν−z−) = 0 in Q := Ω × [0, T ] (2.6)
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· ∇)z−
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+ ν+z−) = 0 in Q (2.7)

∇ · z±
= 0 in Q (2.8)

z±(x, 0) = z±

IC(x) inΩ (2.9)

z±
= z±

BC on Γ × [0, T ]. (2.10)

From now on, in all the sequel we assume that

ν− > 0,

Ω

qdΩ = 0 and

Γ

z±
· nds = 0.

Let
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,

in which I3 is the 3 × 3 identity matrix. For aw = [u, v]T , we denote
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With these notations and definitions, it should be understood as
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