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a b s t r a c t

We propose a quasi-Newton minimization approach for the solution of the p(x)-Laplacian
elliptic problem, x ∈ Ω ⊂ Rm. This method outperforms those existing for the p(x)-
variable case, which are based on general purpose minimizers such as BFGS. Moreover,
when compared to ad hoc techniques available in literature for the p-constant case, and
usually referred to as ‘‘mesh independent’’, the present method turns out to be generally
superior thanks to better descent directions given by the quadratic model.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider the p(x)-Laplacian elliptic problem
−div(|∇u(x)|p(x)−2

∇u(x)) = f (x) x ∈ Ω ⊂ Rm,
u(x) = 0 x ∈ ∂Ω

(1)

where Ω is an open bounded subset of Rm with ∂Ω Lipschitz continuous, p ∈ P log, that is p is a measurable function,
p : Ω → [1, +∞] and 1/p is globally log-Hölder continuous. Moreover, we assume 1 < pmin ≤ p(x) ≤ pmax < ∞,
f ∈ Lp

′(x)(Ω) (where p′(x) denotes the dual variable exponent of p(x)) and u ∈ V = W 1,p(x)
0 (Ω). Since p(x) is bounded,

we may see the space W 1,p(x)
0 (Ω) as the space of functions in W 1,p(x)(Ω) with null trace on ∂Ω . The trace operator can

be defined on W 1,p(x)(Ω) in such a way that, as usual, if u ∈ W 1,p(x)(Ω) ∩ C(Ω), then its trace coincides with u|∂Ω . We
refer to [1] for a general introduction to variable exponent Sobolev spaces. This model occurs in many applications, such as
image processing [2,3] and electrorheological fluids [4–6], in which p(x)may assume values close to the extreme ones [7–9].
Hereafter we leave the explicit dependence on x ∈ Ω ⊂ Rm only for the exponent p(x) and all integrals are intended over
the domain Ω . The p(x)-Laplacian problem (1) admits a unique [10] weak solution u satisfying

u = argmin
v∈V

J(v)

where

J(u) =


|∇u|p(x)

p(x)
−


fu (2)

or, equivalently,

J ′(u)v = 0, ∀v ∈ V (3)
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where

J ′(u)v =


|∇u|p(x)−2

∇u · ∇v −


f v. (4)

A commonway [11–14] to tackle the problem is the directminimization, in a suitable finite dimensional subspace ofV , of the
functional J in Eq. (2), rather than solving the nonlinear equation (3) [15]. However, to our knowledge, ad hoc minimization
algorithms were developed only for the p-constant case [13–15], whereas only general purpose methods such as the quasi-
Newton method BFGS (Broyden–Fletcher–Goldfarb–Shanno) have been used for the p(x)-variable case [12].

In this work weminimize J(u) employing a new quadratic model which makes use of the exact second differential J ′′(u),
only slightly regularized in order to handle possible analytic or numerical degeneracy when |∇u| is small and p(x) is close
to the extreme values pmin or pmax. The result is an efficient and robust algorithm converging faster than those available in
literature, both for the p-constant case and the p(x)-variable one.

2. Minimization problem

Weminimize J(u) in a suitable finite element subspace of V and we call uh the solution

uh
= arg min

vh∈Vh
0

J(vh) ⇔ J ′(uh)vh
= 0 ∀vh

∈ V h
0 .

Given a regular triangulation of a polygonal approximation Ωh of the domain, we select the subspace V h
0 ⊂ V of continuous

piecewise linear functions which are zero at the boundaries of Ωh. Since for p ≠ 2 problem (1) is degenerate quasi-linear
elliptic, its solution has a limited regularity (see, for instance, [16]) and therefore higher-order finite element approximations
do not worth (see Ref. [17]). For the variable exponent case, p(x) is approximated by continuous piecewise linear functions
as well, even if a local approximation by constant functions is possible (see Ref. [10,18]). Given the approximation un

∈ V h
0

of the solution uh at iteration n, we look for a direction dn ∈ V h
0 such that

J(un
+ αndn) < J(un).

The descent direction dn is called steepest descent direction if

J ′(un)dn = −
J ′(un)


∗

dn
where ∥·∥ is a suitable norm in V h

0 and ∥·∥∗ its dual norm. The idea (see Ref. [13,14]) is to find dn as the solution of

dn : bn(dn, v) = −J ′(un)v, ∀v ∈ V h
0

where bn(·, ·) is a suitable bilinear form depending on iteration n. The choice of bn characterizes the minimization method.
The extension to non-homogeneous Dirichlet boundary conditions is straightforward. The solution u belongs to the

variable exponent Sobolev space W 1,p(x)
g = {v ∈ W 1,p(x)

: v = g on ∂Ω} and its piecewise approximation must be in
the space V h

gh , that is the space of continuous piecewise linear functions whose value of ∂Ωh is gh, where gh is chosen to
approximate the Dirichlet boundary data. The search directions are still in the space V h

0 .

2.1. Gradient-based directions

The choice in Ref. [13], for the p-constant case, is dn = wn, where

bn(wn, v) =




(ε +
∇un

p−2
)∇wn

· ∇v, p > 2
(ε +

∇un
)p−2

∇wn
· ∇v, p < 2.

(5)

The bilinear form bn(·, ·) corresponds to a simple linearization of J ′(un)v. The parameter ε is introduced in order to handle
possible analytic or numerical degeneracy where |∇un| is small. In fact, for p ≫ 2 the term |∇un|p−2 may underflow even
if |∇un| > 0. On the other hand, for p < 2 the same term may overflow. We notice that the parameter ε is introduced only
for finding the descent direction and not for regularizing the original p(x)-Laplacian functional J . With the above choice, the
authors in Ref. [13] proved a convergence result (J(un) → J(u)) only for the case p > 2. Their complicated proof is hardly
extendible to the case p < 2 or to the general case with variable p(x). The direction wn is called in Ref. [13] preconditioned
steepest descent. The scalar value αn is chosen by exact line search

αn = argmin
α

J(un
+ αdn). (6)

In Ref. [14] wn is computed for all 1 < p < +∞ using the first definition in (5). The descent direction is then computed
by

dn = wn
+ βndn−1
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