

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Quasi-Newton minimization for the p(x)-Laplacian problem

M. Caliari*, S. Zuccher

Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy

ARTICLE INFO

Article history: Received 1 December 2015 Received in revised form 4 May 2016

Keywords: p(x)-Laplacian Degenerate quasi-linear elliptic problem Quasi-Newton minimization

ABSTRACT

We propose a quasi-Newton minimization approach for the solution of the p(x)-Laplacian elliptic problem, $x \in \Omega \subset \mathbb{R}^m$. This method outperforms those existing for the p(x)-variable case, which are based on general purpose minimizers such as BFGS. Moreover, when compared to *ad hoc* techniques available in literature for the p-constant case, and usually referred to as "mesh independent", the present method turns out to be generally superior thanks to better descent directions given by the quadratic model.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider the p(x)-Laplacian elliptic problem

$$\begin{cases} -\operatorname{div}(|\nabla u(x)|^{p(x)-2} \nabla u(x)) = f(x) & x \in \Omega \subset \mathbb{R}^m, \\ u(x) = 0 & x \in \partial \Omega \end{cases}$$
(1)

where Ω is an open bounded subset of \mathbb{R}^m with $\partial\Omega$ Lipschitz continuous, $p\in\mathcal{P}^{\log}$, that is p is a measurable function, $p\colon\Omega\to[1,+\infty]$ and 1/p is globally log-Hölder continuous. Moreover, we assume $1< p_{\min}\le p(x)\le p_{\max}<\infty$, $f\in L^{p'(x)}(\Omega)$ (where p'(x) denotes the dual variable exponent of p(x)) and $u\in V=W_0^{1,p(x)}(\Omega)$. Since p(x) is bounded, we may see the space $W_0^{1,p(x)}(\Omega)$ as the space of functions in $W^{1,p(x)}(\Omega)$ with null trace on $\partial\Omega$. The trace operator can be defined on $W^{1,p(x)}(\Omega)$ in such a way that, as usual, if $u\in W^{1,p(x)}(\Omega)\cap\mathcal{C}(\overline{\Omega})$, then its trace coincides with $u|_{\partial\Omega}$. We refer to [1] for a general introduction to variable exponent Sobolev spaces. This model occurs in many applications, such as image processing [2,3] and electrorheological fluids [4–6], in which p(x) may assume values close to the extreme ones [7–9]. Hereafter we leave the explicit dependence on $x\in\Omega\subset\mathbb{R}^m$ only for the exponent p(x) and all integrals are intended over the domain Ω . The p(x)-Laplacian problem (1) admits a unique [10] weak solution \underline{u} satisfying

$$\underline{u} = \arg\min_{v \in V} J(v)$$

where

$$J(u) = \int \frac{|\nabla u|^{p(x)}}{p(x)} - \int fu \tag{2}$$

or, equivalently,

$$J'(u)v = 0, \quad \forall v \in V \tag{3}$$

E-mail addresses: marco.caliari@univr.it (M. Caliari), simone.zuccher@univr.it (S. Zuccher).

^{*} Corresponding author.

where

$$J'(\underline{u})v = \int |\nabla \underline{u}|^{p(x)-2} \nabla \underline{u} \cdot \nabla v - \int fv. \tag{4}$$

A common way [11-14] to tackle the problem is the direct minimization, in a suitable finite dimensional subspace of V, of the functional J in Eq. (2), rather than solving the nonlinear equation (3) [15]. However, to our knowledge, *ad hoc* minimization algorithms were developed only for the p-constant case [13-15], whereas only general purpose methods such as the quasi-Newton method BFGS (Broyden–Fletcher–Goldfarb–Shanno) have been used for the p(x)-variable case [12].

In this work we minimize J(u) employing a new quadratic model which makes use of the exact second differential J''(u), only slightly regularized in order to handle possible analytic or numerical degeneracy when $|\nabla u|$ is small and p(x) is close to the extreme values p_{\min} or p_{\max} . The result is an efficient and robust algorithm converging faster than those available in literature, both for the p-constant case and the p(x)-variable one.

2. Minimization problem

We minimize J(u) in a suitable finite element subspace of V and we call \underline{u}^h the solution

$$\underline{u}^h = \arg\min_{v^h \in V_0^h} J(v^h) \Leftrightarrow J'(\underline{u}^h) v^h = 0 \quad \forall v^h \in V_0^h.$$

Given a regular triangulation of a polygonal approximation Ω_h of the domain, we select the subspace $V_0^h \subset V$ of continuous piecewise linear functions which are zero at the boundaries of Ω_h . Since for $p \neq 2$ problem (1) is degenerate quasi-linear elliptic, its solution has a limited regularity (see, for instance, [16]) and therefore higher-order finite element approximations do not worth (see Ref. [17]). For the variable exponent case, p(x) is approximated by continuous piecewise linear functions as well, even if a local approximation by constant functions is possible (see Ref. [10,18]). Given the approximation $u^n \in V_0^h$ of the solution u^h at iteration u^h and u^h and u^h at iteration u^h and u^h at iteration u^h at iteration u^h and u^h at iteration u^h and u^h at u^h and u^h

$$J(u^n + \alpha_n d^n) < J(u^n).$$

The descent direction d^n is called *steepest descent* direction if

$$J'(u^n)d^n = -\|J'(u^n)\|_*\|d^n\|$$

where $\|\cdot\|$ is a suitable norm in V_0^h and $\|\cdot\|_*$ its dual norm. The idea (see Ref. [13,14]) is to find d^n as the solution of

$$d^n$$
: $b_n(d^n, v) = -I'(u^n)v$, $\forall v \in V_0^h$

where $b_n(\cdot,\cdot)$ is a suitable bilinear form depending on iteration n. The choice of b_n characterizes the minimization method. The extension to non-homogeneous Dirichlet boundary conditions is straightforward. The solution \underline{u} belongs to the variable exponent Sobolev space $W_g^{1,p(x)}=\{v\in W^{1,p(x)}\colon v=g\ \text{on}\ \partial\Omega\}$ and its piecewise approximation must be in the space $V_{g_h}^h$, that is the space of continuous piecewise linear functions whose value of $\partial\Omega_h$ is g_h , where g_h is chosen to approximate the Dirichlet boundary data. The search directions are still in the space V_0^h .

2.1. Gradient-based directions

The choice in Ref. [13], for the *p*-constant case, is $d^n = w^n$, where

$$b_n(w^n, v) = \begin{cases} \int (\varepsilon + |\nabla u^n|^{p-2}) \nabla w^n \cdot \nabla v, & p > 2\\ \int (\varepsilon + |\nabla u^n|)^{p-2} \nabla w^n \cdot \nabla v, & p < 2. \end{cases}$$
 (5)

The bilinear form $b_n(\cdot,\cdot)$ corresponds to a simple linearization of $J'(u^n)v$. The parameter ε is introduced in order to handle possible analytic or numerical degeneracy where $|\nabla u^n|$ is small. In fact, for $p\gg 2$ the term $|\nabla u^n|^{p-2}$ may underflow even if $|\nabla u^n|>0$. On the other hand, for p<2 the same term may overflow. We notice that the parameter ε is introduced only for finding the descent direction and not for regularizing the original p(x)-Laplacian functional J. With the above choice, the authors in Ref. [13] proved a convergence result $(J(u^n)\to J(u))$ only for the case p>2. Their complicated proof is hardly extendible to the case p<2 or to the general case with variable p(x). The direction w^n is called in Ref. [13] preconditioned steepest descent. The scalar value α_n is chosen by exact line search

$$\alpha_n = \arg\min_{\alpha} J(u^n + \alpha d^n). \tag{6}$$

In Ref. [14] w^n is computed for all 1 using the first definition in (5). The descent direction is then computed by

$$d^n = w^n + \beta_n d^{n-1}$$

Download English Version:

https://daneshyari.com/en/article/4637800

Download Persian Version:

https://daneshyari.com/article/4637800

<u>Daneshyari.com</u>