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1. Introduction

We consider the p(x)-Laplacian elliptic problem

{—div(wu(x)w(x)*z Vu) =f(x) xe £ cCR™, (1)

uix) =0 Xe o

where £2 is an open bounded subset of R™ with 3£2 Lipschitz continuous, p € &'°, that is p is a measurable function,
p: 2 — [1,4o00] and 1/p is globally log-Hélder continuous. Moreover, we assume 1 < ppin < p(X) < Pmax < 00,
f e Lp/(")(fz) (where p’(x) denotes the dual variable exponent of p(x)) andu € V = Wg’p(x)(!)). Since p(x) is bounded,
we may see the space W, "™ (£2) as the space of functions in W'?® (£2) with null trace on 3£2. The trace operator can
be defined on W'P® () in such a way that, as usual, if u € WP®(2) N (), then its trace coincides with u|y,. We
refer to [1] for a general introduction to variable exponent Sobolev spaces. This model occurs in many applications, such as
image processing [2,3] and electrorheological fluids [4-6], in which p(x) may assume values close to the extreme ones [7-9)].
Hereafter we leave the explicit dependence on x € 2 C R™ only for the exponent p(x) and all integrals are intended over
the domain £2. The p(x)-Laplacian problem (1) admits a unique [10] weak solution u satisfying

u = argminJ(v)
veV

where
|Vu[P®
Jw = - / fu (2)
p(x)
or, equivalently,
JWv=0, YveV (3)
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where

Jwv = f IVulP®=2Vu - Vo - /fv. (4)

A common way [ 11-14] to tackle the problem is the direct minimization, in a suitable finite dimensional subspace of V, of the
functional J in Eq. (2), rather than solving the nonlinear equation (3) [ 15]. However, to our knowledge, ad hoc minimization
algorithms were developed only for the p-constant case [ 13-15], whereas only general purpose methods such as the quasi-
Newton method BFGS (Broyden-Fletcher-Goldfarb-Shanno) have been used for the p(x)-variable case [12].

In this work we minimize J (u) employing a new quadratic model which makes use of the exact second differential J” (u),
only slightly regularized in order to handle possible analytic or numerical degeneracy when |Vu| is small and p(x) is close
to the extreme values pmin OF pPmax. The result is an efficient and robust algorithm converging faster than those available in
literature, both for the p-constant case and the p(x)-variable one.

2. Minimization problem

We minimize J(u) in a suitable finite element subspace of V and we call u" the solution

u' = arg minh](vh) s =0 Vo' eVl
thVO

Given a regular triangulation of a polygonal approximation §2;, of the domain, we select the subspace Vé’ C V of continuous
piecewise linear functions which are zero at the boundaries of 2. Since for p # 2 problem (1) is degenerate quasi-linear
elliptic, its solution has a limited regularity (see, for instance, [ 16]) and therefore higher-order finite element approximations
do not worth (see Ref. [17]). For the variable exponent case, p(x) is approximated by continuous piecewise linear functions
as well, even if a local approximation by constant functions is possible (see Ref. [10,18]). Given the approximation u" € Vé’
of the solution u" at iteration n, we look for a direction d" € V{ such that

JW" + apd”) < J").
The descent direction d" is called steepest descent direction if
Jhd = —ranf, d"
where ||| is a suitable norm in vg and ||-]|, its dual norm. The idea (see Ref. [13,14]) is to find d" as the solution of
d": by(d", v) = =)' W"v, Vve V!
where b, (-, -) is a suitable bilinear form depending on iteration n. The choice of b, characterizes the minimization method.
The extension to non-homogeneous Dirichlet boundary conditions is straightforward. The solution u belongs to the

variable exponent Sobolev space W, *® = {v € W'P®: vy = gon 352} and its piecewise approximation must be in
the space Vg”h, that is the space of continuous piecewise linear functions whose value of 92y, is g,, where g, is chosen to

approximate the Dirichlet boundary data. The search directions are still in the space V(’,’.

2.1. Gradient-based directions

The choice in Ref. [ 13], for the p-constant case, is d" = w", where

) f(e + |Vu”|p72)Vw” -Vv, p>2
ba(w", v) =

(5)
/(s + |Vu“})p72Vw” -Vv, p<2.

The bilinear form b, (-, -) corresponds to a simple linearization of J'(u")v. The parameter ¢ is introduced in order to handle
possible analytic or numerical degeneracy where |Vu"| is small. In fact, for p > 2 the term |Vu" [P~ may underflow even
if |[Vu"| > 0. On the other hand, for p < 2 the same term may overflow. We notice that the parameter ¢ is introduced only
for finding the descent direction and not for regularizing the original p(x)-Laplacian functional J. With the above choice, the
authors in Ref. [13] proved a convergence result (J(u") — J(u)) only for the case p > 2. Their complicated proof is hardly
extendible to the case p < 2 or to the general case with variable p(x). The direction w" is called in Ref. [13] preconditioned
steepest descent. The scalar value o, is chosen by exact line search

a, = argminJ(u" + ad"). (6)
In Ref. [14] w" is computed for all 1 < p < 400 using the first definition in (5). The descent direction is then computed
by
dn — wn +ﬂndn7]
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