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a b s t r a c t

We present a first order system least squares (FOSLS) method for the Helmholtz equation
at high wave number k, which always leads to a Hermitian positive definite algebraic
system. By utilizing a non-trivial solution decomposition to the dual FOSLS problemwhich
is quite different from that of the standard finite elementmethods,we give an error analysis
to the hp-version of the FOSLS method where the dependence on the mesh size h, the
approximation order p, and the wave number k is given explicitly. In particular, under
some assumption of the boundary of the domain, the L2 norm error estimate of the scalar
solution from the FOSLSmethod is shown to be quasi optimal under the condition that kh/p
is sufficiently small and the polynomial degree p is at leastO(log k). Numerical experiments
are given to verify the theoretical results.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Lots of least squares methods have been extensively studied for the efficient and accurate numerical approximation of
many partial differential equations such as the elliptic, elasticity and Stokes equations. As mentioned in [1], there are three
kinds of least-squaresmethods: the inverse approach, the div approach, and the div–curl approach. The interest of this paper
is to consider the div approach least squares method which applies a chosen L2 norm to a natural first order system for the
Helmholtz equation with Robin boundary condition which is the first order approximation of the radiation condition:

−1u − k2u = f inΩ, (1.1a)
∂u
∂n

− iku = g on ∂Ω, (1.1b)

where Ω ⊂ Rd (d = 2 or 3) is a bounded, Lipschitz and connected domain, the wave number k is real and positive, and i
denotes the imaginary unit.Wewant to point out that if the sign before i in (1.1b) is positive, the corresponding least squares
method and theoretical analysis in this paper also hold. We impose further assumptions on the domainΩ in the following:
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(A1) There is a constant C > 0 such that for any f ∈ L2(Ω) and g ∈ L2(∂Ω), the Helmholtz equation (1.1) has a unique
solution u ∈ H1(Ω) satisfying

∥∇u∥L2(Ω) + k∥u∥L2(Ω) ≤ C

∥f ∥L2(Ω) + ∥g∥L2(∂Ω)


.

(A2) The boundary ofΩ is analytic.

The above assumptions are intrinsic for the analysis in this paper, while the least squares method can be applied for more
general cases. In fact, [2] shows the assumption (A1) holds if the domainΩ is star-shaped; and [3, Theorem 1.8] obtains the
same estimate without the star-shaped restriction.

Due to the well-known pollution effect for the numerical solution of the Helmholtz equation, the standard Galerkin
finite element methods can maintain a desired accuracy only if the mesh resolution is appropriately increased. Numerous
nonstandard methods have been proposed in the literature to obtain more stable and accurate approximation, which
includes quasi-stabilized finite element methods [4], absolutely stable discontinuous Galerkin (DG) methods [5–9],
continuous interior penalty finite element methods [10,11], the partition of unity finite element methods [12,13], the
ultra weak variational formulation [14], plane wave DGmethods [15,16], spectral methods [17], generalized Galerkin/finite
element methods [18–20], meshless methods [21], and the geometrical optics approach [22].

Generally, the linear systems from most of the above nonstandard Galerkin finite element approximations of the
Helmholtz equation with high wave number k are strongly indefinite. But the least-squares Galerkin method for the
Helmholtz equation always yields a Hermitian positive definite system [23,24]. Hence it attracts the design of an efficient
solver. For instance, a div–curl approach least squaresmethodwas applied to theHelmholtz equation in [24], and an efficient
solver based on wave-ray multigrid was proposed. Recently, numerical results in [25] show that a multiplicative Schwarz
algorithm, without coarse solver, provides a p-preconditioner for solving the DPG system. The numerical observations
suggest that the condition number of the preconditioned system is independent of the wavenumber k and the polynomial
degree p. Since bothDPGmethods and FOSLS are residualminimizationmethods such that their linear systems areHermitian
positive definite, it is promising that the multiplicative Schwarz preconditioner in [25] will provide similar preconditioning
for FOSLS. We will show the effect of the multiplicative Schwarz preconditioner for our FOSLS in a separate paper.

A key result revealed by J.M. Melenk and S. Sauter in [26] is that the polynomial degree p should be chosen in a
wavenumber-dependent way to yield optimal convergent conditions. This important result was analyzed based on the
standard Galerkin finite element method. It shows that, under the assumption that the solution operator for Helmholtz
problems is polynomially bounded in k, quasi optimal convergence can be obtained under the conditions that kh/p is
sufficiently small and the polynomial degree p is at least O(log k).

An objective of this paper is to extend the key result in [26] to the div approach FOSLS method, which will be called
FOSLSmethod for brevity in the following.We use the standard Raviart–Thomas finite element space and continuous piece-
wise polynomial finite element space for the discretization of the FOSLS method. The stability of the FOSLS solutions for
the Helmholtz equation can be obtained by the property of FOSLS formulation and a Rellich-type identity approach. The
main difficulty in the analysis lies in the establishment of quasi optimal convergence for the FOSLS method. We first mimic
the technique proposed in [26] to decompose the Helmholtz solution into an oscillatory analytic part and a nonoscillatory
elliptic part. A key estimate for the oscillatory analytic part of the Helmholtz solution (cf. (4.5c) in Theorem 4.3) is further
derived for the error analysis of the FOSLSmethod for the Helmholtz equation. Another crucial estimate lies in the derivation
of the dependence of convergence on the polynomial degree p. A new H(div) projection is designed to overcome this
problem, and some important estimates, which reveal the dependence of the projection error on k, h, p, for this H(div)
projection are obtained. In Remark 5.2, we explain why it is necessary to use Raviart–Thomas space instead of vector
valued continuous piece-wise polynomial space to approximate vector fields in H(div,Ω). In Remark 4.5, we give detailed
explanation why the projection-based interpolation in [27] can not be applied for the quasi optimal convergent estimate for
the Helmholtz equation. The most important part of the analysis lies in a modified duality argument for the FOSLS method
which is motivated by the duality argument used in [1]. Roughly speaking, the corresponding dual FOSLS problem is to find
(ψ, v) ∈ {ψ ∈ H(div,Ω) : ψ · n|∂Ω ∈ L2(∂Ω)} × H1(Ω) satisfying

∥u − uh∥
2
L2(Ω) = (ik(φ − φh)+ ∇(u − uh), ikψ + ∇v)Ω + (ik(u − uh)+ ∇ · (φ − φh), ikv + ∇ · ψ)Ω

+ k⟨(φ − φh) · n + (u − uh),ψ · n + v⟩∂Ω .

Here, ikφ+∇u = 0, and (φh, uh) is the numerical approximation to (φ, u). Then, the regularity estimates for the oscillatory
analytic part (ψA, vA) and the nonoscillatory elliptic part (ψH2 , vH2) of the solution of the above dual FOSLS problem are
deduced. Since the above dual FOSLS problem is quite different from the dual problem used in [28,26], these regularity
estimates, especially the estimate of ∥∇ · ψH2∥H1(Ω) (cf. (5.1e) in Lemma 5.1), gets involved with non-trivial modification
to the original proof of solution decomposition in [26]. Finally the quasi optimality of the L2 norm error estimate for the
scalar solution of the FOSLS method for the Helmholtz equation can be finally obtained under the conditions that kh/p is
sufficiently small and the polynomial degree p is at least O(log k).

We want to emphasize that FOSLS is closely related to the discontinuous Petrov–Galerkin (DPG) methods, see [29–45].
Recently, the DPGε method, which is of the least-squares type, was proposed in [46]. The DPGε solution may yield less
pollution error than the general FOSLS with fixed polynomial degree p and on the same mesh. The analysis for FOSLS in this
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