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a b s t r a c t

In this paper, we study a deterministic infinite horizon, mixed continuous and impulse
control problem in Rn, with general impulses, and cost of impulses. We assume that
the cost of impulses is a positive function. We prove that the value function of the
control problem is the unique viscosity solution of the related first order Hamilton–Jacobi
quasi-variational inequality.1 We then propose time discretization schemes of this QVI,
where we consider two approximations of the ‘‘Hamiltonian hH ’’, including a natural one.
We prove that the approximate value function uh exists, that it is the unique solution of
the approximate QVI and that it forms a uniformly bounded and uniformly equicontinuous
family. We also prove that the approximate value function converges locally uniformly,
towards the value function of the control problem, when the discretization step h goes to
zero; the rate of convergence is proved to be in hσ , where 0 < σ < 1/2.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

This paper extends to the quasi variational inequality of impulse control problems earlier works on the discretization
of Hamilton–Jacobi equations [1,2]. We treat in the paper a mixed continuous and impulse control problem, with general
impulses and cost of impulses, andwewill refer to it as an impulse control problem.We focus on an infinite horizon impulse
control problem, but our approach being a time discretization with a Lagrangian differentiation, it may, with minimal
adaptation, be extended to finite horizon impulse control problems. We give regularity results for the value function of the
impulse control problem considered, and show that it is the unique bounded and uniformly continuous2 viscosity solution of
the associated QVI. We propose two related discretization schemes, and for both show the convergence of the approximate
value function to the viscosity solution of the QVI, i.e. the value function of the impulse control problem, and prove a rate
of convergence in a positive (although lower than one) power of the step size. This convergence rate also depends on the
regularity of the value function, Lipschitz or Hölder continuous, depending on the data.

In the previous literature, authors in [3] use the approach of changing the original infinite horizon impulsive control
problem into another one equivalent without impulses, by adding one state variable, in order to use the classic dynamic
programming theory. In this paper, they consider a ‘‘slow growth’’ problem. The meaning of the existence and uniqueness
of the solution of the differential equation considered is not, however, clearly detailed.

In the case of finite horizon impulsive control [4], the discretization is based on Euler schemewith step h. The convergence
rate is in h

1
2 .
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In [5,6], where weaker assumptions on data are examined, the authors consider some general impulse control problems
with a stopping time control, in a set Q = Ω ×[0, T ], where Ω ⊂ Rn is an open bounded set. They assume that the number
of impulses is finite and that both continuous and impulse controls have values in compact sets. Based on the fact that the
value function is characterized as themaximumelement of a setW , their procedure consists in approximating the setQ with
a triangulation Q h, in considering a setW h of linear finite elements defined from Q h to R and satisfying some conditions on
the vertices and on sets approximating the admissible controls, and then in finding themaximum element w̄h of this setW h,
with respect to a certain order ‘‘≤’’. The authors prove that the approximate value function w̄h(x, t) converges uniformly to
the value function V (x, t). In [7], the authors study the same problem in the stationary case. The approximation procedure,
where the set Ω is approximated with a triangulation Ωh, is the same than above. They prove that the approximate value
function w̄h(x) converges uniformly to the value function V (x). Ignoring the continuous control in their control policy, they
prove that the convergence rate is in | log ∥h∥| ∥h∥

1
2 , for all ∥h∥ ≤ ∥h0∥, h0 being a fixed ‘‘initial’’ triangulation.

We also cite [8] where the author deals with explicit and implicit finite difference schemes to the viscosity solution of
Hamilton–Jacobi equations in finite horizon.

The paper is organized as follows: we first present the general impulse control problem studied, the associated first
order Hamilton–Jacobi QVI, the assumptions on the data, and give results on the regularity of the value function. We
then prove that the value function is the unique BUC viscosity solution of the related QVI. In Section 5, we expose the
discrete approximations of the QVI, and prove that the approximate value function uh is their unique solution, that it forms
a uniformly bounded and uniformly equicontinuous family. In Section 6, we prove that the approximate value function
converges, locally uniformly towards the value function, as the step h goes to zero and establish the convergence rate.

2. Statement of the problem

We consider a deterministic, mixed continuous and impulse control problem in Rn, and general in term of the form of
impulses, and cost of impulsesẏx(t) = b(yx(t), τ (t)), t ≠ tk

yx(0) = x,
yx(t+k ) = g(yx(t−k ), ξk),

where b is a function from Rn
× Rl into Rn, τ(t) being the continuous control, is any measurable function from R+ to

Rl, ({tk}, {ξk}) being the impulse control, where (tk)k∈N is a nondecreasing sequence of nonnegative real numbers which
satisfies: tk → +∞ when k → +∞, (ξk)k∈N is a sequence of elements of Rm, and g is a function from Rn

× Rm into Rn.
Let Ψ = (τ (.), {tk}, {ξk}) be the mixed continuous and impulse control. The payoff J is defined as

J(x, Ψ ) =


∞

0
f (yx(t), τ (t)) exp(−λt)dt +


k∈N

c(yx(t−k ), ξk) exp(−λtk),

where λ is a positive number. Let u(x) = infΨ J(x, Ψ ), be the value function of this problem.
The classic QVI associated to this impulse control problem is the following

max{H(x, u,Du), u − Mu} = 0 in Rn, (1)
where

H(x, u,Du) = sup
τ∈Rl

(−b(x, τ ).Du + λu − f (x, τ )),

Mu(x) = inf
ξ∈Rm

(u(g(x, ξ)) + c(x, ξ)).

We will consider in the paper the space X of bounded and continuous functions on Rn, normed by ∥v∥∞ = supx∈Rn |v(x)|.

Remark 2.1. The typical example that provides an interesting framework of the theory of infinite horizon impulse control
is the inventory control problem or the management of stocks [9]. We give hereafter an illustrative example:ẏx(t) = −τ(t), t ∈]tk, tk+1[,

yx(0) = x,
yx(t+k ) = yx(t−k ) + ξk,

x denotes the initial inventory, τ(t) is a measurable function from R+ to a compact set K ⊂ (R+)n that corresponds to the
instantaneous demand of the goods, the times tk are the times where it is decided to replenish the inventory and ξk ∈ (R+)n

are the levels of replenishment.
We propose the following payoff J where the cost of storage and out of stocks is of integral type, we allow that the cost

f depends also on the demand τ(t). The typical example is the cost of handling the goods.

J(x, Ψ ) =


∞

0
f (yx(t), τ (t)) exp(−λt)dt +


k∈N

c(yx(t−k ), ξk) exp(−λtk).



Download English Version:

https://daneshyari.com/en/article/4637806

Download Persian Version:

https://daneshyari.com/article/4637806

Daneshyari.com

https://daneshyari.com/en/article/4637806
https://daneshyari.com/article/4637806
https://daneshyari.com

