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a b s t r a c t

Trigonometric matrix functions play a fundamental role in second order differential
equations. Thiswork presents an algorithmbased on Taylor series for computing thematrix
cosine. It uses a backward error analysis with improved bounds. Numerical experiments
show that MATLAB implementations of this algorithm has higher accuracy than other
MATLAB implementations of the state of the art in the majority of tests. Furthermore, we
have implemented the designed algorithm in language C for general purpose processors,
and in CUDA for one and two NVIDIA GPUs. We obtained a very good performance
from these implementations thanks to the high computational power of these hardware
accelerators and our effort driven to avoid as much communications as possible. All the
implemented programs are accessible through the MATLAB environment.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Many engineering processes are described by second order differential equations, whose exact solution is given in terms
of trigonometric matrix functions sine and cosine. For example, the wave problem

v2
∂2ψ

∂x2
=
∂2ψ

∂t2
, (1)

plays an important role in many areas of engineering and applied sciences. If the spatially semi-discretization method is
used to solve (1), we obtain the matrix differential problem

X ′′(t)+ AX(t) = 0, X(0) = X0, X ′(0) = X1, (2)

where A is a square matrix and X0 and X1 are vectors. The solution of (2) is

X(t) = cos
√

At

X0 +

√
A
−1

sin
√

At

X1, (3)
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where
√
A denotes any square root of a non-singular matrix A [1, p. 36]. More general problems of type (2), with a forcing

term F(t) on the right-hand side arise from mechanical systems without damping, and their solutions can be expressed in
terms of integrals involving the matrix sine and cosine [2].

Numerousmethods have been proposed for computing f (A), where f (.) is a scalar function defined on the spectrumof the
matrix A ∈ Cn×n. Many of them have a dubious numerical stability [3]. A complete theoretical study of matrix functions and
their computational methods and algorithms can be found in [1], in particular the computation of matrix trigonometric
functions. The main methods are based on matrix decompositions and on polynomial and rational approximations.
Since polynomial and rational approximations are accurate only near the origin, scaling and recovering techniques [4–
6] are usually used. Moreover, to reduce computational costs Paterson–Stockmeyer method [7] is used for evaluating the
polynomials which appear in these approximations.

In this work we present sequential and parallel algorithms based on Taylor series that use Theorem 1 from [8] for
computing matrix trigonometric functions.

Throughout this paper Cn×n denotes the set of complex matrices of size n × n, I the identity matrix for this set, ρ(X)
the spectral radius of matrix X , and N the set of positive integers. In this paper we use the 1-norm to compute the actual
norms. Sections 2 and 3 present sequential and parallel Taylor algorithms for computing matrix trigonometric functions,
respectively. Section 4 deals with numerical tests and finally in Section 5 the conclusions are presented.

2. Sequential algorithms for computing matrix cosine and sine

The matrix cosine can be defined for all A ∈ Cn×n by

cos(A) =
∞
i=0

(−1)iA2i

(2i)!
,

and let

T2m(A) =
m
i=0

(−1)iBi

(2i)!
≡ Pm(B), (4)

be the Taylor approximation of order 2m of cos(A), where B = A2. Since Taylor series are accurate only near the origin,
in algorithms that use this approximation the norm of matrix B is reduced by scaling the matrix. Then, a Taylor or Padé
approximation is computed, and finally the approximation of cos(A) is recovered by means of the double angle formula
cos(2X) = 2 cos2(X)− I .

Using the same notation as in [5], we have that Taylor matrix polynomial approximation (4), expressed as Pm(B) =m
i=0 piB

i, B ∈ Cn×n, can be computed with optimal cost by Paterson–Stockmeyer’s method [7] choosingm from the set

M = {1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, . . .} , (5)

where the elements of M are denoted as m1,m2,m3, . . . (see [1, pp. 72–74] for a complete description). The algorithm
computes firstly the matrix powers B2, B3, . . . , Bq being q =

√
mk


or q = ⌊

√
mk⌋, and integer divisor of mk. As stated

in [1, p. 74] using those values for q results in the same cost. Thus, the evaluation formula (23) from [9, p. 6455] is computed
as

Pmk(B) = (((pmkB
q
+ pmk−1B
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q
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q−2
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q
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q−1
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q−2
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q

. . .

+ pq−1Bq−1
+ pq−2Bq−2

+ · · · + p1B+ p0I. (6)

We define the boxing size as the largest polynomial degree which appear in (6), i.e. the value q. Table 1 shows the values
of q for different values of m. Taking into account Table 4.1 from [1, p. 74], then the cost of evaluating (4) with (6) in terms
of matrix products, denoted byΠmk , for k = 1, 2, . . . , is

Πmk = k. (7)

The difficulty of the algorithms based on Taylor series is to find appropriate values mk and the scaling factor s such that
cos(A) is computed accurately and with minimal computational cost.

Next theorem will be used to bound the norm of the matrix Taylor series.

Theorem 1 ([5]). Let hl(x) =

∞

i=l pix
i be a power series with radius of convergence w, h̃l(x) =


∞

i=l |pi|x
i, B ∈ Cn×n with

ρ(B) < w, l ∈ N and t ∈ N with 1 6 t 6 l. If t0 is the multiple of t such that l 6 t0 6 l+ t − 1 and

βt = max{b1/jj : j = t, l, l+ 1, . . . , t0 − 1, t0 + 1, t0 + 2, . . . , l+ t − 1}, (8)
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