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a b s t r a c t

The alternating directionmethod withmultipliers (ADMM) has been one of most powerful
and successful methods for solving a two-block linearly constrained convex minimization
model whose objective function is the sum of two functions without coupled variables. It
is known that the numerical efficiency is inherited for a large number of applications, but
the convergence is not guaranteed if the ADMM is directly extended to a multiple-block
convex minimization model whose objective function has more than two functions. This
viewpoint was in fact the motivation for developing efficient algorithms that cannot only
preserve the numerical advantages of the direct extension of ADMM but also guarantee
convergence. One way is to correct the output of the direct extension of ADMM slightly via
a simple correction step, and the other is to employ a simple proximal to solve inexactly
each subproblem in the direct extension of ADMM. In this paper, in order to solve the
multi-block separable convex minimization model efficiently, we present a method which
is a combination of the above two ways, that is, we first solve each subproblem with a
simple proximal, then we correct the output via a simple correction step. Theoretically,
we derive global convergence results for this method and establish a worst-case O(1/k)
iteration complexity. Numerically, the efficiency of this method can be showed by testing
the problem of recovering low-rank and sparse components of matrices from incomplete
and noisy observation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the following convex optimization problemwithm block variables and the objective being the
sum ofm (m ≥ 2) separable convex functions:

min


m
i=1

θi(xi)
 m

i=1

Aixi = b, xi ∈ Xi, i = 1, 2, . . . ,m


, (1)

where Xi ⊂ Rni (i = 1, 2, . . . ,m) are convex sets; Ai ∈ Rl×ni , b ∈ Rl and θi : Rni → (−∞, +∞] (i = 1, 2, . . . ,m) are
lower semicontinuous proper convex (not necessarily smooth) functions. Throughout, we assume that the solution set of (1)
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is nonempty. This model has numerous applications in many fields, such as the latent variable Gaussian graphical model
selection in [1], the quadratic discriminant analysis model in [2] and the robust principal component analysis model with
noisy and incomplete data in [3,4], and so on.

The augmented Lagrangian function for problem (1) is defined as

Lβ(x1, x2, . . . , xm, λ) =

m
i=1

θi(xi) − λT
 m

i=1

Aixi − b


+
β

2

 m
i=1

Aixi − b
2

, (2)

where λ ∈ Rl is the Lagrangian multiplier for the equality constraint and β > 0 is a penalty parameter. By settingu =

x1
...
xm

 , θ(u) = θ1(x1) + · · · + θm(xm), (a)

A = (A1, A2, . . . , Am), U = X1 × X2 × · · · × Xm, (b)

(3)

the problem (1) can be rewritten as

min

θ(u)

 Au = b, u ∈ U

, (4)

and thus the augmented Lagrangian function (2) can be rewritten as

Lβ(u, λ) = θ(u) − λT (Au − b) +
β

2
∥Au − b∥2. (5)

Sometimes, problems similar to (4) are addressed by means of generalized inverses, which also have other interesting
applications (see [5–11]).

The augmented Lagrangian method (ALM) proposed in [12,13] is a classical method for solving (4). Its iterative scheme
is described as

uk+1
= argmin

u∈ U
Lβ(u, λk), (a)

λk+1
= λk

− β(Auk+1
− b). (b)

(6)

Although the u-subproblem in (6) provides an ideal input for updating the variable λ, its solvability critically depends on
the properties of θi (i = 1, 2, . . . ,m). In this setting, the standard augmented Lagrangian algorithm (6) is not very attractive
because the minimizations of θi in the subproblem (6)(a) are strongly coupled through the term β

2 ∥Au− b∥2 and hence the
subproblems are not likely to be easier to solve than the original problem (1). The conventional alternating directionmethod
ofmultiplier (ADMM) for solving (1) in the casewhenm = 2was proposed in [14] (see also [15–20]) and its iterative scheme
can be described as below:

xk+1
1 = argmin

x1∈X1

Lβ(x1, xk2, λ
k), (a)

xk+1
2 = argmin

x2∈X2

Lβ(xk+1
1 , x2, λk), (b)

λk+1
= λk

− α0β(A1xk+1
1 + A2xk+1

2 − b), (c)

(7)

where α0 is called step length. Unlike the classical augmented Lagrangian method, the ADMM essentially decouples the
functions θ1 and θ2. Inmany situations, this decouplingmakes it possible to exploit the individual structure of the θ1 and θ2 so
that each of (7)(a) and (7)(b) may be computed in an efficient and perhaps highly parallel manner. Fortin and Glowinski [21]
and Glowinski [22] have developed an outstanding global convergence analysis for the conventional ADMM (7) with any
α0 ∈ (0, (1 +

√
5)/2), noticeably in particular α0 = 1.618.

Due to the extreme simplicity and efficiency of the ADMM, it is natural to extend the ADMM (7) directly to the problem
(1) with m ≥ 3 as the following form:

xk+1
1 = argmin

x1∈X1

Lβ(x1, xk2, . . . , x
k
m, λk), (a)

...
...

xk+1
i = argmin

xi∈Xi

Lβ(xk+1
1 , . . . , xk+1

i−1 , xi, xki+1, . . . , x
k
m, λk), (b)

...
...

xk+1
m = argmin

xm∈Xm

Lβ(xk+1
1 , . . . , xk+1

m−1, xm, λk), (c)

λk+1
= λk

− α0β(A1xk+1
1 + A2xk+1

2 + · · · + Amxk+1
m − b). (d)

(8)
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