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a b s t r a c t

This paper deals with the study of a Bessel-type differential equation where input
parameters (coefficient and initial conditions) are assumed to be random variables.
Using the so-called Lp-random calculus and assuming moment conditions on the random
variables in the equation, a mean square convergent generalized power series solution
is constructed. As a result of this convergence, the sequences of the mean and standard
deviation obtained from the truncated power series solution are convergent as well.
The results obtained in the random framework extend their deterministic counterpart.
The theory is illustrated in two examples in which several distributions on the random
inputs are assumed. Finally, we show through examples that the proposed method is
computationally faster than Monte Carlo method.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Deterministic differential equations have demonstrated to be powerful tools to model a number of problems in
physics, chemistry, epidemiology, engineering, etc. When they are put in practice, their inputs (coefficients, forcing term,
initial/boundary conditions) need to be set from sampled data, which usually contain uncertainty. The main source of
randomness comes from measurement errors and complexity of the phenomenon under analysis. This leads to two main
approaches in dealing with differential equations with randomness, namely, stochastic differential equations and random
differential equations. On the one hand, stochastic differential equations consider uncertainty through an irregular Gaussian
stochastic process termed as white noise, i.e., the derivative of the Wiener process. Their analytic and numerical study
requires the so-called Itô calculus [1,2]. On the other hand, random differential equations constitute natural extensions
of their deterministic counterpart since the involved input parameters are considered directly random variables and/or
stochastic process having a more regular behavior. The advantage of considering random differential equations against
stochastic differential equations is thewide range ofwell-known probability distributions that can be assigned to their input
parameters such as beta, gamma, lognormal and Gaussian [3–7]. The analysis of random differential equations is based on
the so-called Lp-random calculus, being mean square and mean fourth calculus specializations corresponding to p = 2 and
p = 4, respectively, that have demonstrated to be very useful for this purpose [8,9].

The goal of this paper is to construct a mean square solution for the Bessel random differential equation (r.d.e.)

t2Ẍ(t) + tẊ(t) + (t2 − A2)X(t) = 0, t > 0, (1)
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where A is assumed to be a random variable defined on a complete probability space (Ω, F , P). Throughout the paper, we
will assume that A is a non-negative random variable with probability 1 (w.p. 1), i.e.,

P [{ω ∈ Ω : A(ω) ≥ 0}] = 1. (2)

The construction of such solution will be performed by random generalized power series whose mean square convergence
will be justified taking advantage of Lp-random calculus. From an applied point of view, it is important to point out that
the computation of the rigorous solution of (1) in the mean square sense guarantees that the approximations generated by
truncating the exact random power series solution of (1) will converge to the corresponding exact mean and variance.
These two statistical moments are often the most relevant information required in applications. This advantage makes
Lp-random calculus, and hence mean square convergence, the convenient framework to study random differential equation
(1) instead of using alternative stochastic convergences such as almost surely, in probability and distribution. Furthermore
we shall show later, through several numerical examples, that random generalized power series solution approach is faster
thanMonte Carlo sampling. This latter approach is themost widely usedmethod to deal with random differential equations
in applications.

The consideration of randomness in the A parameter that appears in the Bessel differential equation (1) can bemotivated
from physical considerations. The wave propagation generated by a electric field and its variations in the medium can be
considered as being randomly varying due to inhomogeneous physical properties of the medium. As it is shown in [10],
the governing equation for the electric field in a specific direction is given by a Bessel equation of the form (1), where A
coefficient depends upon random medium parameters. From a mathematical point of view the Bessel differential equation
is encountered when solving boundary value problems, such as separable solutions to Helmholtz equation in cylindrical or
spherical coordinates. The A parameter determines the order of the Bessel functions found in the solution of Eq. (1). In the
deterministic frameworkAparameter can take any real value. Anatural generalization of this equation to the randomcontext
consists of assuming that A parameter together with the corresponding initial conditions are random variables rather than
deterministic numbers. The extension to the random scenario of another classical second-order linear differential equations
that appear in physics can be found in [11] and in the references therein. In [11], the study is conducted taking advantage
of Lp-calculus. Another contributions solving random differential equations in the mean square sense include [12–14].

The paper is organized as follows. In Section 2 the main results regarding the so-called Lp-random calculus that will
be required throughout the paper are summarized and/or established. Section 3 is devoted to construct two mean square
convergent randomgeneralized power series of the Bessel differential equation undermild conditions. Section 4 is addressed
to apply the theoretical results established in Section 3 to construct amean square solution of the random Bessel differential
equation with two random initial conditions. Several illustrative examples are shown in Section 5. Conclusions are drawn
in Section 6.

2. Preliminaries on Lp-random calculus

Hereinafter, the triplet (Ω, F , P)will denote a complete probability space. For the sake of clarity, firstwewill summarize
the main definitions and results that will be used throughout this paper. Further details about them can be found in
[1,8,9,15]. We will also establish new technical results related to the so-called Lp-random calculus that will be required
later.

Let p ≥ 1 be a real number. A real random variable X defined on (Ω, F , P) is called of order p (in short, p-r.v.), if

E

|X |

p < ∞,

where E [ ] denotes the expectation operator. The set Lp(Ω) of all the p-r.v.’s endowed with the norm

∥X∥p =

E

|X |

p1/p ,

is a Banach space, [16, p. 9]. Let {Xn : n ≥ 0} be a sequence in Lp(Ω). We say that it is convergent in the pth mean to
X ∈ Lp(Ω), if

lim
n→∞

∥Xn − X∥p = 0.

This convergence is denoted by Xn
pth mean
−−−−→
n→+∞

X . For p = 2, this 2th mean convergence is usually referred to as mean square
convergence.

If q > p ≥ 1, and {Xn : n ≥ 0} is a convergent sequence in Lq(Ω), that is, qth mean convergent to X ∈ Lq(Ω), then
{Xn : n ≥ 0} is in Lp(Ω) and it is pth mean convergent to X ∈ Lp(Ω). In general, Lq(Ω) ⊂ Lp(Ω) for q > p ≥ 1, [16, p. 13].
Moreover, using the Cauchy–Schwarz inequality one can demonstrate that [17, p. 415]

∥XY∥q ≤ ∥X∥2q∥Y∥2q, X, Y ∈ L2q(Ω), q ≥ 1. (3)

From these facts it is easy to establish the following.

Proposition 1. Let {Xn : n ≥ 0} be a sequence in L2q(Ω), q ≥ 1. If Y ∈ L2q(Ω) and Xn
2qth mean
−−−−−→
n→+∞

X then, YXn
qth mean
−−−−→
n→+∞

YX.
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