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a b s t r a c t

This paper is aimed to address the study of techniques focused on the use of a family of
anomalies based on a family of geometric transformations that includes the true anomaly f ,
the eccentric anomaly g and the secondary anomaly f ′ defined as the polar angle with re-
spect to the secondary focus of the ellipse.

This family is constructed using a natural generalization of the eccentric anomaly. The
use of this family allows closed equations for the classical quantities of the two body prob-
lem that extends the classic, which are referred to eccentric, true and secondary anomalies.

In this paper we obtain the exact analytical development of the basic quantities of the
two body problem in order to be used in the analytical theories of the planetary motion. In
addition, this paper includes the study of the minimization of the errors in the numerical
integration by an appropriate choice of parameters in our selected family of anomalies for
each value of the eccentricity.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The study of themotion in the solar system is one of strengths of CelestialMechanics. This issue involves the development
of planetary theories and the motion of artificial satellites around the earth. In this paper, we deal with both topics.

To construct a planetary theory two major ways can be considered: the use of a numerical integrator [1,2] or the use of
analytical methods to integrate the problem [3–6].

The analytical methods are based on the solution of the two body problem (Sun-planet) through a set of orbital ele-
ments, for example the third set of Brower and Clemence [7] (a, e, i, Ω, ω,M), where M = M0 + n(t − t0), n is the mean
motion, t0 is the initial epoch whose value are constant in the unperturbed two body problem andMo the mean anomaly in
the initial epoch t0. This solution can be considered as a first approximation of the perturbed problem and we can use the
Lagrange method of variation of constants to replace the first elements by the osculating ones given by the Lagrange plan-
etary equations [8]
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σ is a new variable defined by the equation:

M = σ +

 t

t0
n dt (2)

and it coincides with M0 in the case of the unperturbed motion. R is the disturbing potential R =
N

k=1 Ri due to the dis-
turbing bodies i = 1, . . . ,N . It is defined as [8]
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where r⃗ = (x, y, z) and r⃗k = (xk, yk, zk) are the heliocentric vector position of the secondary body and the kth disturbing
body respectively,∆k is the distance between the secondary body and the disturbing body, andmk themass of the disturbing
body.

In order to integrate the Lagrange planetary equations through analytical methods it is necessary to develop the
second member of the Lagrange planetary equations as truncated Fourier series, which is a classical problem in celestial
mechanics [6,9,7,10,11]. The analytical methods provide very long series solution and it is suitable to obtain more compact
developments using as temporal variable an appropriate anomaly.

To obtain the expansions according to an anomaly Ψi it is necessary to obtain for each planet i the developments of the
coordinates and the inverse of the radius in Fourier series of Ψi. Then, the integration of the Lagrange planetary equations
with respect to the Ψi anomalies requires to compute the corresponding Kepler equationMi = Mi(Ψi) [12–14].

When using numerical integration methods it is more appropriate to consider the equation of motion in the form of
the second Newton law. The efficiency of the numerical integrators can be improved through an appropriate change in the
temporal variable. In this paper we will study the performance of the previous family of anomalies. To this aim, we select
the problem of the motion of an artificial satellite around the Earth. The relative motion of the secondary with respect to
the Earth is defined by the second order differential equations

d2 r⃗
dt2

= −GM
r⃗
r3

− ∇⃗U − F⃗ (4)

where r⃗ is the radius vector of the satellite, U the potential fromwhich the perturbative conservative forces are derived and
F⃗ includes the non-conservative forces. To integrate the system (4) it is necessary to know the initial values of the radius
vector r⃗0 and velocity v⃗0.

In order to uniformize the truncation errors when a numerical integrator is used there are three main techniques:

1. The use of a very small stepsize.
2. The use of an adaptative stepsize method.
3. The use of a change in the temporal variable to arrange an appropriate distribution of the points on the orbit so that the

points are mostly concentrated in the regions where the speed and curvature are maxima.

This paper follows the third technique. Several authors have already studied this question. See for instance, Sundman [15],
who introduced a new temporal variable τ related to the time t through dt = Crdτ , Nacozy [16] proposed a new temporal
variable dt = Cr3/3dτ , Brumberg [17] proposed the use of the regularized length of arc and Brumberg and Fukushima [18]
introduced the elliptic anomaly as temporal variable. Janin [19,20] and Velez [21] extended this technique defining a
new one-parameter family of transformations α called generalized Sundman transformations dt = Q (r, α)dτα , where
Q (r, α) = Cαrα . The function Q (r) is normally known as partition function. A more complicated family of transformations
was introduced by Ferrándiz [22] Q (r) = r2/3(a0 + a1r)−1/2. López [23] introduces an new family of anomalies, called
natural anomalies as Ψα = (1 − α)f ′

+ αf , α ∈ [0, 1] where f , f ′ are the true and secondary anomalies it is the angle
between the periapsis and the secondary position taking as origin the primary focus F or the secondary focus of the ellipse
f ′ respectively. Analytical and numerical properties of generalized Sundman anomalies and natural have been studied by
López et al. [24–26].
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