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a b s t r a c t

In the current study, new functions called generalized fractional-order Bernoulli wavelet
functions (GFBWFs) based on the Bernoulli wavelets are defined to obtain the numerical
solution of fractional-order pantograph differential equations in a large interval. For the
concept of fractional derivative we will use Caputo sense by using Riemann–Liouville
fractional integral operator. First, the generalized fractional-order Bernoulli wavelets are
constructed. Then, these functions and their properties are employed to derive the GFBWFs
operational matrices of fractional integration and pantograph. The operational matrices of
integral and pantograph are utilized to reduce the problem to a set of algebraic equations.
Finally, some examples are included for demonstrating the validity and applicability of our
method.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Fractional calculus is increasingly used in various areas of physics and engineering, namely in electromagnetism [1],
visco-elastic materials [2], fluid mechanics [3], dynamics of viscoelastic materials [4], continuum and statistical
mechanics [5] and propagation of spherical flames [6]. However, since the kernel of these differential equations is fractional,
it is very difficult to obtain their exact solutions. Therefore, extensive research has been performed on the development of
numerical methods for fractional differential equations. These methods include Chebyshev collocation method [7], Laplace
transform method [8], differential transform method [9,10], Adomian decomposition method [11], Legendre operational
matrix [12], CAS wavelet [13], etc.

In this paper, we consider the fractional pantograph differential equation

Dγ u(t) = a(t)u(t)+

l
r=1

br(t)Dγr u(qr t), m − 1 < γ ≤ m, t ∈ [0, h], (1)

subject to the initial conditions

u(i)(0) = µi, i = 0, 1, . . . ,m − 1. (2)
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Here, 0 < qr < 1, 0 ≤ γr < γ ≤ m, r = 1, 2, . . . , l; u is an unknown function; a and br , r = 1, 2, . . . , l, are the known
functions defined in [0, h].

Fractional delay differential equations (FDDEs) have many applications in different technical systems, such as automatic
control, biology and hydraulic networks, long transmission lines, economy and biology [14]. The pantograph equation
is one of the most important kinds of delay differential equations, and plays an important role in explaining various
phenomena. The pantograph delay differential equations arise in many applications namely electrodynamics. In recent
years, several numerical methods have been devoted to solve of pantograph delay differential equations of integer order
such as, Chebyshev polynomials [15], Bernoulli polynomials [16], variational iteration method [17], etc. But there are few
works devoted to numerical solution of pantograph delay differential equations of fractional order. From these works
we can mention, Hermite wavelet method [18], spectral-collocation method [19] and Legendre multiwavelet collocation
method [20].

Wavelet theory is a relatively new and an emerging area in mathematical research. It has been applied in a wide range of
engineering disciplines; particularly,wavelets are very successfully used in signal analysis forwaveform representations and
segmentations, time–frequency and analysis of fast algorithms for easy implementation [21]. Wavelets permit the accurate
representation of a variety of functions and operators [22]. Moreover, wavelets establish a connection with fast numerical
algorithms [23]. For solving fractional order differential equations, the operational matrices of fractional order integration
for the Haar wavelet [24], Chebyshev wavelet [25], Legendre wavelet [26], CAS wavelet [27] and Bernoulli wavelet [28] are
calculated.

Recently, the authors [29] defined the new orthogonal functions based on the shifted Legendre polynomials to obtain
numerical solution of fractional-order differential equations. The paper [30] extended this definition and presented the
operational matrix of fractional derivative and integration for such functions to construct a new Tau technique for solving
fractional partial differential equations (FPDEs). The authors [31] proposed the fractional-order generalized Laguerre
functions based on the generalized Laguerre polynomials. They used these functions to find numerical solution of systems
of fractional differential equations. The paper [32], presented a collocation method based on the Bernstein polynomials for
the fractional Riccati type differential equations. Moreover, the authors of [33] expanded the fractional Legendre functions
to interval [0, h] and to acquire numerical solution of FPDEs.

So, our purpose is to construct the new fractional-order wavelets based on Bernoulli wavelets on the interval [0, h] for
solving fractional pantograph differential equations.

In this work, firstly the various terms in the underlying fractional pantograph differential equation are approximated by
linear combinations of the generalized fractional-order Bernoulli wavelets and truncating them at optimal levels. Finally,
the problem is converted to an algebraic equation by introducing the GFBWFs operational matrices of fractional integration
and pantograph. Therefore, there are some questions to be answered:

(i) How to derive the GFBWFs operational matrices of fractional integration and pantograph.
(ii) How to analyze the fractional pantograph differential equations via the GFBWFs operational matrices of fractional

integration and pantograph.
(iii) How to select value of fractional order (α) of new functions for different problems.

The present article is organized as follows. In Section 2, we introduce some basic definitions of fractional calculus. In
Section 3, we construct the GFBWFs and the generalized fractional-order Bernoulli functions (GFBFs) and give their
properties. In Section 4, the GFBWFs operationalmatrices of fractional integration and pantograph are obtained. In Section 5,
the numerical method for solving the fractional pantograph differential equations is expressed. In Section 6, we obtain an
error function. This function can be checked the accuracy of the approximate solutions for the values of γ , that the exact
solution is not known. In Section 7, we report our numerical results and demonstrate the accuracy of the proposed method
by considering numerical examples. A conclusion is given in Section 8.

2. Basic definitions of fractional calculus

In this section, we recall the essentials of the fractional calculus theory that will be used in this paper.

Definition 1. The Riemann–Liouville fractional integral operator of order γ is defined as [28]

Iγ u(x) =


1

Γ (γ )

 x

0

u(s)
(x − s)1−γ

ds, γ > 0, x > 0,

u(x), γ = 0.
(3)

For the Riemann–Liouville fractional integral we have [28,32]

1. Iγ1 Iγ2u(x) = Iγ1+γ2u(x),
2. Iγ (λ1u(x)+ λ2y(x)) = λ1Iγ u(x)+ λ2Iγ y(x),
3. Iγ xβ =

Γ (β+1)
Γ (β+γ+1)x

γ+β , β > −1,

where γ1, γ2, λ1 and λ2 are constants.
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