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a b s t r a c t

Traub’s method is a tough competitor of Newton’s scheme for solving nonlinear equations
as well as nonlinear systems. Due to its third-order convergence and its low computational
cost, it is a good procedure to be applied on complicated multidimensional problems. In
order to better understand its behavior, the stability of the method is analyzed on cubic
polynomials, showing the existence of very small regions with unstable behavior. Finally,
the performance of the method on cubic matrix equations arising in control theory is pre-
sented, showing a good performance.

© 2016 Elsevier B.V. All rights reserved.

1. Motivation

In many branches of Science and Technology it is necessary to solve different kinds of nonlinear equations or systems
F(x) = 0, where F : X → Y , being X and Y Banach spaces. The best known iterative scheme is Newton’s method

x(k+1)
= x(k)

− [F ′(x(k))]−1F(x(k)), k = 0, 1, . . .

but Traub’s scheme increases the order of convergence of Newton’s one, without a complex iterative formula

y(k)
= x(k)

− [F ′(x(k))]−1F(x(k)),

x(k+1)
= y(k)

− [F ′(x(k))]−1F(y(k)), k = 0, 1, . . .
(1)

where F ′(x) denotes the Fréchet derivative of F . This scheme can be successfully used, with third-order convergence, on
nonlinear problems.

In Control Theory (in the calculation of the logarithm of a matrix or in the computation of sector function), nuclear
magnetic resonance, lattice quantum chromo-dynamics and other areas of applications,matrix equations such as Xp

−A = 0
where the pth root of a matrix Amust be calculated, can appear (see, for example, [1–3]). Most of the known algorithms are
useless for their numerical instability, unless A is very well conditioned. So, in order to adapt only the best iterativemethods
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for solving this kind of nonlinear problems, we wonder about their behavior on these polynomials, as many of them can
be adapted to solve matrix equations holding the order of convergence but it is necessary to know about their stability
properties.

In the last few years, the use of tools from Complex Dynamics has allowed the researchers in this area of Numerical
Analysis to understand the stability of iterative schemes deeply. (see, for example, [4–13]). The analysis, in these terms, of the
rational function R associated with the iterative procedure applied on quadratic polynomials, gives us valuable information
about its role on the convergence’s dependence on initial estimations, the size and shape of convergence regions and even
on a possible convergence to fixed points that are not solution of the problems to be solved or to different attracting or even
superattracting cycles. Moreover, if a parametric family is studied under this point of view, the most stable elements of the
class can be chosen, by means of an appropriated use of the parameter plane.

In this paper, we analyze the dynamics of the rational operator associated to Traub’smethod on cubic polynomials. Stable
and pathological behaviors are obtained depending on the polynomial.

1.1. Dynamical concepts

In this section, we recall some concepts of complex dynamics that we use in this paper. These concepts can be completed
in [14]. So, we need that nonlinear function f is defined on Riemann sphere Ĉ, as ∞ becomes one more point to be taken
into account.

Let us assume that a fixed point iteration function acts on an arbitrary polynomial p(z); that yields a rational function,
that will be denoted by R. So, given any rational function R : Ĉ → Ĉ, where Ĉ is the Riemann sphere, the orbit of a point
z0 ∈ Ĉ is defined as:

{z0, R (z0) , R2 (z0) , . . . , Rn (z0) , . . .}.

Then, we analyze the phase plane of the map R by classifying the starting points from the asymptotical behavior of their
orbits. A z0 ∈ Ĉ is called a fixed point if R (z0) = z0 is satisfied. A periodic point z0 of period p > 1 is a point such that
Rp (z0) = z0 and Rk (z0) ≠ z0, for k < p.

Moreover, a fixed point z0 is called attractor if |R′(z0)| < 1, superattractor if |R′(z0)| = 0, repulsor if |R′(z0)| > 1 and
parabolic if |R′(z0)| = 1. The fixed points different from those associated with the roots of the polynomial p(z) are called
strange fixed points.

A point z0 is a critical point of the rational map R if R fails to be injective in any neighborhood of z0. Indeed, if a critical
point is different from those associated with the roots of the polynomial p(z), it is called free critical point. Indeed, any
superattracting fixed point is a critical point (let us remark that, if the iterative method has order of convergence at least
two, the roots of p(z) are superattracting fixed points).

The basin of attraction of an attractor α is defined as the set of points that, used as initial estimation, converge to α:

A (α) = {z0 ∈ Ĉ : Rn (z0) → α, n → ∞}.

The Fatou set of the rational function R, F (R), is the set of points z ∈ Ĉ whose orbits tend to an attractor (fixed point
or periodic orbit). Its complement in Ĉ is the Julia set, J (R). That means that the basin of attraction of any fixed or periodic
point belongs to the Fatou set and the boundaries of these basins of attraction belong to the Julia set.

The following classical result is a key fact to be used in the definition and interpretation of parameter planes. In it, the
concept of immediate basin of attraction is introduced, that is, the connected component of the basin of attraction that
includes the attracting fixed point.

Theorem 1 ([15,16]). Let R be a rational function. The immediate basin of attraction of an attracting fixed or periodic point holds,
at least, a critical point.

The conjugacy classes are extremely useful because they allow us to get general results by using simple functions. Let f
and g be functions defined andwith image at Riemann sphere. An analytic conjugation between f and g is a diffeomorphism
h : Ĉ → Ĉ such that h ◦ f = g ◦ h.

The following results assure us that, if our aim is to analyze the stability of Traub’s method on cubic polynomials, it is
enough to study its behavior on p(z) = (z − 1)(z − r)(z + 1), as the dynamics are equivalent, that is, a conjugacy preserves
fixed and periodic points as well as their character and basins of attraction.

Theorem 2 (Scaling Theorem [17]). Let f (z) be an analytic function, and let T (z) = αz + γ , with α ≠ 0, be an affine map. If
g(z) = (f ◦ A)(z), then (T ◦ Rg ◦ T−1)(z) = Rf (z), that is, Rf is affine conjugated to Rg by T , where Rf and Rg denote the fixed
point operator of Traub’s method on f and g, respectively.

Theorem 3 ([18]). Let q(z) be any cubic polynomial with simple roots. Then, it can be parametrized by means of an affine map
to p(z) = (z − 1)(z − r)(z + 1), r ∈ C. This map induces a conjugacy between Rq(z) and Rp(z).
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