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a b s t r a c t

The Brinkman equations are used to describe the dynamics of fluid flows in complex porous
media, with the high variability in the permeability coefficients, whichmay take extremely
large or small values. This paper is devoted to the numerical analysis of a family of weak
Galerkin (WG) finite elementmethods for solving the time-dependent Brinkman problems.
ThisWGmethod is equippedwith stable finite elements consisting of usual polynomials of
degree k ≥ 1 for the velocity and polynomials of degree k−1 for the pressure. The velocity
element is enhanced by polynomials of degree k on the interface of the finite element
partition. All the finite element functions are discontinuous for which the usual gradient
and divergence operators are implemented as distributions in properly-defined spaces.We
further establish a priori error estimates in L2 norm and H1 norm, and we provide a few
numerical experiments to illustrate the behavior of the proposed scheme and confirm our
theoretical findings regarding optimal convergence of the approximate solutions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The viscous flow of incompressible fluids in complex porous media was extensively investigated in the last several
decades [1–4] due to its wide applications in industry and science, such as petroleum industry, underground water hy-
drology, mangrove swamps, biomedical engineering, and heat pipes modeling, etc. The common feature of these problems
is that themedia are composed by complex cavity. The permeability varies highly on several scales. The problem is governed
by the so-called Brinkman equations [5] as follows:

ut − µ1u + ∇p + µκ−1u = f in Ω × [0, T ], (1.1)
∇ · u = 0 in Ω × [0, T ], (1.2)

u = g on ∂Ω × [0, T ], (1.3)

u(·, 0) = u0 in Ω, (1.4)

where µ is the fluid viscosity and κ denotes the permeability tensor of the porous media. u and p represent the velocity and
pressure of the fluid, and f is a momentum source term. ut is the time partial derivative of u(x, t). f ∈ [L2(0, T ;Hs(Ω))]d,
g ∈ [L2(0, T ;Hs+1(∂Ω))]d, and u0

∈ [Hs+1(Ω)]d, where s ≥ 0 is an integer. We assume that the system is defined in a
bounded polygonal or polyhedral domain Ω ⊂ Rd (d = 2, 3), for t ∈ [0, T ]. For simplicity, we consider (1.1) and (1.3) with
µ = 1 and g = 0 (note that one can always scale the solution with µ).
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Assume that there exist two positive numbers λ1, λ2 > 0 such that

λ1ξ
tξ ≤ ξtκ−1ξ ≤ λ2ξ

tξ, ∀ξ ∈ Rd.

Here ξ is understood as a column vector and ξt is the transpose of ξ. We consider the case where λ1 is of unit size and λ2 is
possibly of large size.

The above parabolic system has been treated by various numerical methods, for example, the finite element
methods(FEMs) [6–10], the mixed FEMs [11–14], finite volumemethods [15,16], the method of characteristics type [17,18],
and discontinuous Galerkin methods [19–21]. The goal of this paper is to present a newly developed weak Galerkin finite
elementmethod for the time-dependent Brinkman equationswhich are based on the definitions of discreteweak divergence
and gradient operators introduced in [22].

The weak Galerkin (WG) method was first introduced in 2012 [23] for the second order elliptic problem [24–27],
biharmonic problem [28–31] and further developed for other applications, such as the Stokes [32,33], Maxwell [34], etc.
Its central idea is to interpret the partial differential operators as generalized distributions over the space of discontinuous
functions including boundary information, and employ some proper stabilizations to enforce weak continuities for
approximating functions. The WG methods, by design, use discontinuous piecewise polynomials. The WG methods are
highly flexible in element construction and mesh generation. It enforces the weak continuity by introducing weakly define
derivatives and parameter free stabilizers. Formulations of the WG methods can be easily obtained from the variational
forms of the corresponding PDE by simply replacing derivatives by weakly defined derivatives and adding a stabilizer. The
WGmethods havewide range of applications in applied problems arising from science and engineering. The basic principles
and some recent developments of weak Galerkin finite element methods have been reviewed in [35].

In this paper, we present a stable numerical method for the time-dependent Brinkman equations using weak Galerkin
finite element methods. The WGmethod presents a natural and straightforward framework for constructing stable numer-
ical algorithms for the Brinkman problem. Actually, as reported in Ref. [22,36], the Brinkman equation resembles features
of either Darcy flow or Stokes flow, depending on the parameter µ. The weak Galerkin method is robust for the parameter
µ according to [22]. It has been shown that the WG methods are efficient and robust by allowing the use of discontinuous
approximating functions. The proposed WG method is equipped with stable finite elements consisting of polynomials of
degree k ≥ 1 for the velocity and polynomials of degree k− 1 for the pressure. The velocity element is enhanced by polyno-
mials of degree k on the interface of the finite element partition. The backward Euler Weak Galerkin method is defined by
replacing the time derivative by a backward difference quotient for the fully-discrete scheme. We further establish a priori
error estimates in L2 norm andH1 norm, and provide a few numerical experiments to illustrate the efficiency of our scheme.

2. The weak Galerkin method

In this section we design a semi-discrete and a fully-discrete weak Galerkin finite element schemes for the Brinkman
problems (1.1)–(1.4).

This paper uses the standard definition for the Sobolev space Hs(D) and the associated inner products (·, ·)s,D, norms
∥ · ∥s,D for any s ≥ 0. The space H0(D) coincides with L2(D). When D = Ω , we shall drop the subscript D and s in the norm
and inner product notation. When D is an edge/face, we also use ⟨·, ·⟩D to represent the L2 inner product.

Let Th be a partition of the domainΩ consisting of polygons in R2 or polyhedral in R3 satisfying a set of conditions [27] to
be specified, and T be each element with ∂T as its boundary. Denote by Fh the set of all edges or faces in Th. For any element
T ∈ Th, denote by hT the diameter of T . Similarly, the diameter of e is given by he. We shall define the mesh size of partition
Th as

h = max
T∈Th

hT .

For each T ∈ Th, let Pr(T ) and Pr(∂T ) be the sets of polynomials on T and ∂T with degree no more than r , respectively.
We introduce weak Galerkin finite element spaces for the velocity function u and the pressure function p, as follows:

Vh = {v = {v0, vb} : {v0, vb}|T ∈ [Pk(T )]d × [Pk(e)]d, e ∈ ∂T , vb = 0 on ∂Ω},

Wh = {q ∈ L20(Ω) : q|T ∈ Pk−1(T )},

where L20(Ω) = {q ∈ L20(Ω);


Ω
qdT = 0}. By a weak Galerkin function v = {v0, vb}, we mean v = v0 inside of the element

T and v = vb on the boundary of the element T . We would like to emphasize that any function v ∈ Vh has a single value vb
on each edge e ∈ Fh.

The parabolic problem (1.1)–(1.4) can be written in the following variational formulation [37,38] which presented the
well-posed analysis of this problem: Find u ∈ L2(0, T ; [H1

0 (Ω)]d) and p ∈ L2(0, T ; L20(Ω)) satisfying

(ut , v) + (∇u, ∇v) + (κ−1u, v) − (p, ∇ · v) = (f, v),
(∇ · u, q) = 0,

u(·, 0) = u0,

for all v ∈ [H1
0 (Ω)]d and q ∈ L20(Ω) for t ∈ (0, T ].
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