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a b s t r a c t

A discontinuous Galerkin least-squares finite elementmethod is proposed to solve coupled
reaction–diffusion equations with singular perturbations. This method produces solutions
without numerical oscillations when uniform meshes are used. Numerical examples are
provided to demonstrate the efficiency of the method.
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1. Introduction

Consider the following coupled system ofM singularly perturbed reaction–diffusion equations

Lu := −E21u + Au = f in Ω := (0, 1)d, (1a)
u = 0 on ∂Ω, (1b)

where u(x) = (u1(x), . . . , uM(x))T , E = diag(ε1, . . . , εM) is an M × M diagonal matrix with parameters 0 < εi ≤ 1,
A(x) = (aij(x))M×M and f(x) = (f1(x), . . . , fM(x))T are sufficiently smooth, and d = 1, 2 or 3 is the dimension of region Ω .
To ensure that (1) has a solution, it is assumed that there are constants α and β such that [1]

α := min
1≤i≤M

min
x∈Ω

aii(x) > 0, (2a)

aij ≤ 0 on Ω for i ≠ j, 1 ≤ i, j ≤ M, (2b)

and

0 ≤ β := max
1≤i≤M

βi < 1, (2c)

where

βi = max
x∈Ω

1
aii(x)

M
j=1
j≠i

|aij(x)|, 1 ≤ i ≤ M.
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The focus of this paper is on numerical approximation of (1)with singular perturbations; i.e. when some or all parameters
εi ≪ 1. This problem is very challenging, as solutions of such problems typically possess boundary layers, a very small region
inwhich solution values change severely. To resolve the layers, gradedmeshes, such as Bakhvalovmeshes, Shishkinmeshes,
and other adaptive meshes, have been applied in finding numerical solutions of this type of problems. Nevertheless, when
the parameters εi are in different orders of magnitudes, it is very difficult to design a working graded mesh (cf., e.g., [2]).

In this work, we will propose a discontinuous Galerkin (DG) least-squares (LS) finite element method (FEM) for
singularly perturbed problem (1). The highlight of themethod is its numerical stability: optimal solutionswithout numerical
oscillations can be obtained on a uniform mesh of big size. This method is a natural combination of the LS method and the
DGmethod, which has been introduced to solve single convection–reaction–diffusion equations with singular perturbation
[3–5]. It has desirable properties of both the LS and the DGmethods. In particular, the LS FEM is amixedmethodminimizing
the residuals in a least-squares sense,whichhas uniform formulation for different problems. For linear differential equations,
it leads to symmetric positive-definite algebraic systems which can be efficiently solved by iterative methods. Comparing
with general mixed methods, the LS FEM does not require the inf–sup conditions on the finite element spaces. It has been
applied to solve a wide scope of problems. For more details on the theory and applications of LS FEMs, we refer to the
books [6,7] and the references therein. TheDGmethod, on the other hand,was initially introduced to solve neutron transport
equations, which has been widely applied to solve different types of problems. Allowing for discontinuities in the trial and
test spaces, the DGmethod offers an efficient approach to resolve interfaces and layers. For more information about the DG
method, the readers are referred to the books [8,9] and the references therein.

In this paper, we will introduce the DG LS FEM for problem (1) and present numerical examples without providing
rigorous analysis. In particular, in the rest of this section, notations will be introduced. In Section 2, the DG LS FEM will
be introduced with details. In Section 3, several numerical examples will be reported to show the efficiency of the method.
Concluding remarks will be given in Section 4.

1.1. Notations

Throughout this paper, we shall use C to denote a generic positive constant which is independent of ϵi, 1 ≤ i ≤ M and
of the mesh used. Column vectors and scalars are denoted by bold and plain letters, respectively.

We will denote the inner products in L2(Ω) and Cartesian powers of L2(Ω) by (·, ·)Ω . For 1 ≤ p ≤ ∞ and s ≥ 0, we
use the standard notations for the Sobolev space W s

p(Ω) and its norm ∥ · ∥W s
p(Ω) and seminorm | · |W s

p(Ω). Hs(Ω) is used to
stand for the spaceW s

2(Ω), whose norm and seminorm are denoted by ∥ · ∥s,Ω and | · |s,Ω , respectively. When no confusion
may arise, the measure Ω will be omitted from the above norm designations. We recall the space H1

0 (Ω) consisting of all
functions in H1(Ω) that vanish on the boundary ∂Ω , and the space

H(div; Ω) =

q ∈ [L2(Ω)]d : ∇ · q ∈ L2(Ω)


.

We define further the vector function space

H(Ω) = H(div; Ω) × H1
0 (Ω)

with the following energy norms in H(Ω) for 1 ≤ i ≤ M

∥(q; v)∥2
0,εi = ε2

i ∥q∥
2
0 + ∥v∥

2
0, (3)

∥(q; v)∥2
1,εi = ε4

i ∥∇ · q∥
2
0 + ε2

i |v|
2
1 + ∥(q; v)∥2

0,εi . (4)

Here, we denote the norms on Cartesian powers [Hs(Ω)]d also by ∥ · ∥s,Ω , or simply ∥ · ∥s, where there is no chance for
ambiguity.

Let Th = {Ωk}
N
k=1 be a regular triangulation on Ω with mesh size h = max1≤k≤N diam(Ωk). Let E be the union of the

boundaries of all elements Ωk associated with the partition Th, and Eint ⊂ E be the set of all interior edges in Ω . Note that
graded meshes (e.g. Bakhvalov meshes and Shishkin meshes) can be used, which however are not necessary for the method
proposed in below. In this paper, unless otherwise specified, our discussions are on uniform meshes.

We shall use the following broken Sobolev spaces

Hs(Th) =

v ∈ L2(Ω) : v|Ωk ∈ Hs(Ωk), 1 ≤ k ≤ N


,

for s ≥ 0 and

H(Th) =

(q; v) ∈ H(div; Th) × H1(Th) : v|∂Ω = 0


,

where

H(div; Th) =

q : q|Ωk ∈ [L2(Ωk)]

d, ∇ · q|Ωk ∈ L2(Ωk), 1 ≤ k ≤ N

.

The inner products and norms for the continuous spaces can be analogously defined for the broken Sobolev spaces. In par-
ticular, for (q; v) ∈ H(Th), we define its energy norms for 1 ≤ i ≤ M

∥(q; v)∥2
0,εi =

N
k=1

∥(q; v)∥2
0,εi,Ωk

and ∥(q; v)∥2
1,εi =

N
k=1

∥(q; v)∥2
1,εi,Ωk

, (5)
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