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a b s t r a c t

Four types of global error for initial value problems are considered in a common frame-
work. They include classical forward error analysis and shadowing error analysis together
with extensions of both to include rescaling of time. To determine the amplification of the
local error that bounds the global error we present a linear analysis similar in spirit to con-
dition number estimation for linear systems of equations. We combine these ideas with
techniques for dimension reduction of differential equations via a boundary value formu-
lation of numerical inertial manifold reduction. These global error concepts are exercised
to illustrate their utility on the Lorenz equations and inertial manifold reductions of the
Kuramoto–Sivashinsky equation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In many complex systems modeled using differential equations the slow dynamics drive the system. There is a vast
literature on inertial manifold techniques to determine the mapping between the slow dynamics and the fast dynamics.
This decouples the system and focuses attention on the (often) low dimensional slow dynamics that drive the system. Once
such a low dimensional reduction is achieved, then one would like to infer the behavior of the system from simulations of
the reduced equations. An often overlooked problem is in assessing whether the global error on the inertial manifold can be
controlled and inwhat sense. The standard approach to global error analysis is classical forward error analysis for initial value
differential equations inwhich the initial condition is the same for both the exact solution and the numerical approximation.
Shadowing error analysis generalizes this in a significantway by allowing for slightly different initial conditions for the exact
and approximate solutions. This expands the class of problems for which long time error statements are possible, from
contractive problems to those with a splitting between expansive and contractive modes. A further refinement that has
been investigated in the shadowing literature involves the rescaling of time when differential equations have a non-trivial
attractor.

Our contribution in this paper is to develop a unified approach to global error analysis for initial value problems that
can be used to determine when there is uncertainty in the numerical approximation of solutions of differential equations;
we also show that the technique is applicable in the context of inertial manifold dimension reduction. We report on initial
numerical experiments for a new inertial manifold reduction technique combined with an assessment of the global error in
approximating the reduced equations. The inertial manifold technique which we outline here and describe in more detail
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in [1] involves first performing a time dependent linear decoupling transformation and then determining the mapping
between the slow and fast dynamics implicitly by solving a boundary value problem. Information obtained during the
solution of the boundary value problem is then employed to assess the relationship between the local error and if possible
the global error as characterized by forward or shadowing error analysis and with or without rescaling of time. In this paper
we highlight four different types of long time global error analysis. We will also exercise recently developed techniques for
dimension reduction in differential equations in the context of these types of global error analysis.

Shadowing based techniques for global error analysis involve relaxing the requirement that the initial conditions for the
exact solution and the numerical solution agree. This has the effect that the linearized error equation need not be solved
forward in time. This allows for positive global error statements for a larger class of problems over long time intervals,
i.e., for problems that are not contractive such as in the case of a systemwith positive Lyapunov exponents. Shadowing also
provides a framework to allow for rescaling of time, i.e., allowing for perturbations in the time step, (see thework of Coomes,
Kocak, and Palmer [2,3], and Van Vleck [4,5]). Rescaling of time is especially important when there is a periodic orbit ormore
general non-trivial attractor [6]. Work on numerical shadowing includes the ground breaking work of Hammel, Yorke, and
Grebogi [7,8], the work of Chow, Lin, and Palmer (e.g. [9,10]), the numerical work of Sauer and Yorke [11], and the initial
work on breakdown of shadowing of Dawson, Grebogi, Sauer, and Yorke [12].

Inertial manifolds, first introduced by Foias, Sell, and Temam [13] for dissipative dynamical systems, are finite
dimensional, exponentially attracting, positively invariant Lipschitz manifolds. Similar concepts are slow manifolds in
slow–fast system introduced inmeteorology andwidely used inweather forecasting [14–17], and center-unstablemanifolds
in the classic sense. In fact, [18] shows that a slow manifold is a special type of inertial manifold, and as mentioned in the
original work [13], it can be described as a global center-unstable manifold. The main application is the inertial manifold
reduction, meaning the restriction of the dynamical system to the inertial manifold where the long-term dynamics coincide
with those of the original system without introducing errors. In particular, since the manifold is finite dimensional, the
reduced system is also finite dimensional, whereas the original system may arise from an infinite dimensional system.
Because of its importance, there has been tremendous work in regard to its theory and computation, see e.g. [19–25] and
[19–24,26,25], respectively. Recently, the theory of inertial manifolds has been generalized to non-autonomous dynamical
systems [27–30], and recently, to random dynamical systems [31], and [32] (and the references therein).

We take the approach here of decoupling the time-dependent linear part of the equation using techniques that have
proven useful in the approximation of Lyapunov exponents. We first employ an orthogonal change of variables Q (t) that
brings the time dependent coefficient matrix for the linear part of the equation to upper triangular. Subsequently, we will
compute a change of variables that decouples the linear part. This then gives us equations of the form considered by Aulbach
and Wanner in [33]. A similar change of variables has been employed to justify that Lyapunov exponents and Sacker–Sell
spectrum may be obtained from the diagonal of an upper triangular coefficient matrix (see section 5 of [34] and sections
4 and 5 of [35]). The Refs. [36,37] (see also the references therein) provide a summary and overview of recent work on
approximation of Lyapunov exponents and in obtaining the orthogonal change of variables Q (t).

This paper is outlined as follows. We first present a framework for global error analysis in Section 2. Techniques to be
employed for non-autonomous inertial manifold reduction are in Section 3. In Section 4we outline of methods to determine
the amplification of the local error that determines the global error. This is followed by details of our dimension reduction
implementation based upon time dependent linear decoupling transformation and subsequent solution of the inertial
manifold equations using a boundary value differential equation solver. Section 5 contains the results of the technique
applied to the three dimensional Lorenz 1963 model and to an inertial manifold reduction of a Galerkin approximation of
the Kuramoto–Sivashinsky equation.

2. Framework for global error analysis

In this section we present a framework for global error analysis of initial value differential equations. We will focus
our attention on four specific characterizations of global error analysis. The differences among the characterizations is
determined by which variables are allowed to differ between the numerically computed solution and an exact solution.
This follows the framework developed for shadowing based error analysis in [4].

To make these ideas concrete consider a smooth initial value ODE of the form

u̇ = f (u, t), u(t0) = u0. (2.1)

If we let ϕ(un, hn; tn) denote the solution operator that advances the state variable un, hn time units from tn, then the exact
solution satisfies (for tn+1 = tn + hn),

u(tn+1) = ϕ(u(tn), hn; tn).

A general approach to global error analysis can be obtained using the setup employed in numerical shadowing. Outlined
below are four measures of the computational error in approximating the solution to an initial value differential equations.
Subsequently, we will apply these ideas to the reduction obtained on the inertial manifold to assess to the computational
error in approximating solutions to these reduced set of equations.

The idea behind shadowing type global error analysis is to use a numerical approximation of the solution as an initial
guess for a functional Newton-type iteration and show that this converges to a nearby exact solution. If we let x = {xn}Nn=0
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