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h i g h l i g h t s

• Present a new box iterative method for a class of nonlinear interface problems.
• Obtain a new hybrid solver of Poisson–Boltzmann Equation (PBE) as application.
• Develop a new Newton-PCG-MG scheme for nonlinear boundary value problems.
• Obtain a simple series solution for Poisson ball test model with multiple charges.
• Validate the new PBE hybrid software and demonstrate its high performance.
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a b s t r a c t

In this paper, a new box iterativemethod for solving a class of nonlinear interface problems
is proposed by intermixing linear and nonlinear boundary value problems based on a
special seven-overlapped-boxes partition. It is then applied to the construction of a new
finite element and finite difference hybrid scheme for solving the Poisson–Boltzmann
equation (PBE) — a second order nonlinear elliptic interface problem for computing
electrostatics of an ionic solvated protein. Furthermore, a modified Newton minimization
algorithm accelerated by a multigrid preconditioned conjugate gradient method is
presented to efficiently solve each involved nonlinear boundary value problem. In addition,
the analytical solution of a Poisson dielectric test model with a spherical solute region
containing multiple charges is expressed in a simple series of Legendre polynomials,
resulting in a new PBE test model that works for a large number of point charges. The
new PBE hybrid solver is programmed as a software package, and numerically validated
on the new PBE test model with 892 point charges. It is also compared to a commonly
used finite difference scheme in the accuracy of computing solution and electrostatic
free energy for three proteins with up to 2124 atomic charges. Numerical results on
six proteins demonstrate its high performance in comparison to the PBE finite element
program package reported in Xie (2014).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The classical alternating Schwarz method was introduced by Schwarz in [1] for the purpose of proving the solution
existence and uniqueness of a Poisson boundary value problem in a domain that can be decomposed as the union of two
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Fig. 1. Roles of our seven-overlapped-boxes partition in the development of hybrid nonlinear interface solvers.

‘‘simpler’’ domains. With the development of parallel computer architectures in 1980s, it was extensively re-studied as one
important numerical technique for solving various boundary value problems, known as domain decomposition methods
and preconditioners [2–5]. Its essential idea is to divide a complicated problem into simple subproblems to conquer the
problem. In this paper, we use this idea to construct a new box iterative method for solving a class of nonlinear interface
boundary value problem, which arises frequently from steady state heat diffusion problems with two different diffusion
parameters and electrostatic problems with two different permittivity parameters. As one important application, this new
nonlinear iterative method is used to construct a new finite element and finite difference hybrid scheme to solve the
Poisson–Boltzmann equation (PBE)—a second order nonlinear elliptic interface problem with singular source terms. PBE
has been widely applied to the calculation of electrostatics for protein in ionic solvent [6–11].

The finite element method is a natural choice to deal with a flux interface condition on a complex interface (e.g., a
molecular surface in the case of PBE) [12–16]. But, because of using an interface fitted unstructuredmesh, its implementation
requires a large amount of extra computer memory to store mesh data and the nonzero entries of coefficient matrices. A
system of finite element equations defined on an unstructuredmesh also becomesmuch less efficient to solve than a system
of finite difference equations defined on a Cartesian grid mesh. In fact, a Cartesian grid mesh has simple data structures,
can be generated cheaply, and can lead to standard finite difference stencils. As such, it has been widely used to develop
fast linear and nonlinear iterative schemes including geometric multigrid iterative schemes [17], multigrid preconditioned
Krylov subspacemethods [18], Newtonmultigridmethods [19], andmultigrid preconditioned Newton Krylovmethods [20].
To take advantages of these fast iterative solvers and to reduce the cost of mesh generation, immersed boundary/interface
methods in finite difference formulation [21–25], virtual node methods [26], and immersed finite element methods [27]
have been developed to solve linear interface problems based on uniform Cartesian grid meshes.

We recently proposed a special seven-overlapped-boxes partition to hybridize finite element and finite difference
methods in the numerical solution of a linear interface problem [28]. As illustrated in Fig. 1, we can also use this special box
partition to intermix a nonlinear problem with its linearized problem in the case of solving a nonlinear interface problem.
This observation motivated us to develop the new box iterative method for solving the nonlinear interface problem. That
is, we can restrict the nonlinear interface problem to a much smaller subdomain, the central box, reduce it to a nonlinear
boundary value problem on each neighboring box, and then approximate it as a linear boundary value problem when the
solution is small enough.Moreover, different numerical techniques can be applied to different boxes to turn the box iterative
method into an efficient hybrid nonlinear solver.

As one important application, in this paper, we use this box iterative method to develop a new PBE hybrid solver to
reduce the computing cost of a finite element solution decomposition PBE solver, called SDPB, reported in [29]. In SDPB,
the PBE solution u is constructed as a sum of three functions G, Ψ , and Φ̃ with G being a given function that collects all the
singularity points of u, Ψ a solution of a linear interface problem, and Φ̃ a solution of a nonlinear interface problem (see
(4.3)). Thus, we can apply the new box iterative method to the calculation of Ψ and Φ̃ to yield the new PBE hybrid solver
(see Algorithm 4.1). While SDPBS is adopted to solve each nonlinear interface problem on the central box, we construct an
efficient modified Newton minimization algorithm to solve a nonlinear boundary value problem on each neighboring box
based on the finite difference approach (see Section 5). In particular, the nonlinear boundary value problem is shown to be
equivalent to a nonlinear variational problem with a unique minimizer (see Theorem 5.1), and each Newton equation of
the modified Newtonminimization algorithm is reformulated from a variational form into a linear boundary value problem
(see (5.7)), making it possible to calculate each Newton search direction by a fast finite difference solver—amultigrid V-cycle
preconditioned conjugate gradientmethod (PCG-MG) developed in [28]. Togetherwith a line search scheme for determining
the steplength of each search direction, this modified Newtonmethod, which will be called Newton-PCG-MG for clarity, can
become globally convergent in the calculation of Φ̃ on each neighboring box.

To validate a PBE solver, we construct a new PBE test model (see (6.1)) by using the analytical solution of a Poisson
dielectric testmodelwith a spherical solute regionDp containingmultiple charges (see (6.2)). So far, the Born ballmodel [30],
which is a Poisson dielectric test model with one central charge only, was employed to construct a PBE test model [29,31].
The Kirkwood’s dielectric sphere model [32], which is a linearized PBE test model with a spherical Dp containing multiple
point charges, was used to validate thematched interface and boundary PBE solver (MIBPB) [33], but the tests were done by
using only six point charges due to the expensive cost of computing the analytical solution of the Kirkwood’s model, which
is given as a double series of associated Legendre polynomial Pm

n (i.e., a sum from n = 0 to∞ andm = −n to n; see [33, (A6),
(A8) and (A11)]). Although the analytical solution of the Poisson test model can be followed from the Kirkwood’s model as
a special case, to reduce the computing cost, we recalculate it using different techniques, such as superposition principle
and rotational symmetry mapping, and express the analytical solution as a simple series of Legendre polynomials Pn (see
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