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1. Introduction

As one of the most important semiparametric models, varying coefficient partially linear models (VCPLMs) have been
widely studied by many statisticians. It can be seen as a linear regression model that some coefficients of the predic-
tor variables are assumed to be constant while others are assumed to vary with another element. Related literature can
be referred to [1-5]. However, this linear relationship between the response variable and covariate variable may not be
sufficient in many practical situations, and some more general underlying relationship such as nonlinear dependencies
should be taken into consideration. Therefore, in this paper, we focus our attention on varying coefficient partially nonlin-
ear models (VCPNMs), which was first introduced by Li and Mei [6]. Specifically, let Y be the univariate response variable,
X=X,X,..., Xp)T, Z=Z,2,..., Zq)T and U be the corresponding covariates, a varying coefficient partially nonlinear
model is of the following form

Y =X"a(U) +g(Z, B) +¢, (m
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where “T” denotes the transpose of a vector or matrix throughout this paper, a(-) = (a1(-), a2(),..., ap(-))T is a
p-dimensional vector consisting of unknown coefficient functions, g(-, -) is a known nonlinear function, and g is a vector of
unknown coefficients that do not necessarily have the same dimension with Z. The random error term ¢ is independent of
(X, Z, U) with mean zero and finite variance 2. Obviously, this model preserves the flexibility of varying coefficient models
and easy interpretation of nonlinear model.

In the last couple of decades, variable selection has been an important topic in all regression analysis and many procedures
have been developed for this. Generally speaking, most of the variable selection procedures are based on penalized
estimation using penalty functions. For instance, Frank and Friedman [7] considered the L, penalty, which yields a “Bridge
regression”. Tibshirani [8] proposed the Lasso penalty, which can be viewed as a solution to the penalized least squares
with the L; penalty. Fan and Li [9] developed the SCAD penalty and proved that this variable selection procedure enjoys the
oracle property. Zou [10] proposed the adaptive Lasso penalty and also demonstrated its oracle property. Wang et al. [11]
considered one-step estimator for ultrahigh dimensionality linear regression model with various penalty functions. Note
that all above methods are based on penalized estimation procedures by using a penalty function that has a singularity at
zero. Therefore, these variable selection procedures require convex optimization, which will incur a computational burden.
To this end, Ueki [12] developed a new variable selection procedure named the smooth-threshold estimating equations
that can automatically eliminate irrelevant parameters by setting them as zero and simultaneously estimate the nonzero
regression components in linear regression model. Lai et al. [13] and Lai et al. [14] further extended this procedure to
single-index models and partially linear single-index model, respectively. Li et al. [15] developed a smooth-threshold
generalized estimating equations in generalized linear models with longitudinal data. Tian et al. [ 16] applied this technique
for estimation and variable selection in VCPLM.

Note that for model (1), there exists little literature on its statistical inference up to now. Li and Mei [6] proposed
a profile nonlinear least squares estimation approach for the parameter vector 8 and coefficient function vector o(-)
and established the asymptotic properties of the corresponding estimates. Due to the mechanism of profile method, the
estimation accuracies of § and «(-) are mutually affected. Therefore, motivated by the similar idea of [17-19], here we
firstly construct an efficient estimate of 8, which does not depend on the coefficient functions, based on orthogonality
projection of Z via a simple linear regression model. Then, we approximate each coefficient function via B-spline basis
functions and develop a novel variable selection procedure based on smooth-threshold estimating equations from [12]. The
proposed variable selection procedure can automatically eliminate the irrelevant variables by setting the corresponding
coefficient functions as zero, and simultaneously estimate the nonzero coefficient functions. In summary, this paper mainly
offer the following three contributions. Firstly, compared with the profile nonlinear least squares estimation method of Li
and Mei [6], we separately estimate the parametric vector and coefficient functions, and the corresponding estimates do not
affect each other. Besides, we do not bring in any extra parameter in this process such as bandwidth involved in [6], which
will reduce the computation burden. Secondly, we extend the smooth-threshold estimating equations approach to model (1)
for variable selection purpose that was not considered in [6]. Finally, compared with the existing variable selection
procedure, our approach can be easily implemented without solving any convex optimization problem and possess the
oracle property.

The rest of this paper is organized as follows. In Section 2, we present the details for the estimate of parametric vector
based on orthogonality-projection method, and derive the corresponding asymptotic property under suitable conditions.
In Section 3, we give the variable selection procedure by using smooth-threshold estimating equation, and establish the
theoretical properties including consistency and asymptotic normality of the proposed procedure. Moreover, the choices
of tuning parameters are also discussed in this part. Some numerical examples are conducted in Section 4 to examine the
finite sample performance of the proposed methodologies. We further illustrate the methods via a real data analysis in
Section 5, and a brief conclusion is followed in Section 6. All technical proofs of the main theoretical results are provided in
the Appendix.

2. Orthogonality-projection-based methodology and results

Suppose that {X;, Z;, U;, Y;}IL_; is an independent and identically distributed (i.i.d.) random sample from model (1), that s,

Yi=XoaU)+gZ,B)+e, i=1,2,...,n, (2)

where {g;}]_; are i.i.d. random errors satisfying the conditions E(¢;) = 0 and Var(e;) = 0% < oo. To explore the ideal of

orthogonality-projection-based estimation method, we first introduce some notations for convenience. Let
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