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a b s t r a c t

A weak Galerkin (WG) finite element method for solving the stationary Stokes equations
in two- or three- dimensional spaces by using discontinuous piecewise polynomials is
developed and analyzed. The variational form we considered is based on two gradient
operatorswhich is different from the usual gradient-divergence operators. TheWGmethod
is highly flexible by allowing the use of discontinuous functions on arbitrary polygons or
polyhedra with certain shape regularity. Optimal-order error estimates are established for
the corresponding WG finite element solutions in various norms. Numerical results are
presented to illustrate the theoretical analysis of the new WG finite element scheme for
Stokes problems.
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1. Introduction

The aim of this paper is to present a novel weak Galerkin finite element method for solving the stationary Stokes
equations. LetΩ be a polygonal or polyhedral domain in Rd, d = 2, 3. As a model for the flow of an incompressible viscous
fluid confined inΩ , we consider the following equations

−µ∆u + ∇p = f, inΩ, (1.1)
∇ · u = 0, inΩ, (1.2)

u = g, on ∂Ω, (1.3)

for unknown velocity function u and pressure function p (we require that p has zero average in order to guarantee the
uniqueness of the pressure). Bold symbols are used to denote vector- or tensor-valued functions or spaces of such functions.
Here f is a body source term, µ > 0 is the kinematic viscosity and g is a boundary condition that satisfies the compatibility
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condition
∂Ω

g · n ds = 0,

where n is the unit outward normal vector on the domain boundary ∂Ω .
This problemmainly arises from approximations of low-Reynolds-number flows. The finite element methods for Stokes

and Navier–Stokes problems enforce the divergence-free property in finite element spaces, which satisfy the inf–sup (LBB)
condition, in order for them to be numerically stable [1–5]. The Stokes problem has been studied with various different new
numerical methods: [6–10].

Throughout this paper, we would follow the standard definitions for Lebesgue and Sobolev spaces: L2(Ω),H1(Ω),
[L2(Ω)]d,

[H1
0 (Ω)]

d
= {v ∈ [H1(Ω)]d : v = 0 on ∂Ω}

and

L20(Ω) :=


q ∈ L2(Ω) :


Ω

qdx = 0


are the natural spaces for the weak form of the Stokes problem [3,11]. Denote (·, ·) for inner products in the corresponding
spaces.

Next we assume that µ = 1 and g = 0. Then one of the variational formulations for the Stokes problem (1.1)–(1.3) is to
find u ∈ [H1

0 (Ω)]
d and p ∈ L20(Ω) such that

(∇u,∇v)− (∇ · v, p) = (f, v), (1.4)
(∇ · u, q) = 0, (1.5)

for all v ∈ [H1
0 (Ω)]

d and q ∈ L20(Ω). Here ∇u denotes the velocity gradient tensor (∇u)ij = ∂jui. It is well known that under
our assumptions on the domain and the data, problem (1.4)–(1.5) has a unique solution (u; p) ∈ [H1

0 (Ω)]
d
× L20(Ω).

For any p ∈ L20(Ω), define a functional ∇p such that

⟨∇p, v⟩ = −(∇ · v, p), ∀v ∈ [H1
0 (Ω)]

d.

It is easy to know that the weak form (1.4)–(1.5) is also equivalent to the following variational problem: find (u; p) ∈

[H1
0 (Ω)]

d
× L20(Ω) such that

(∇u,∇v)+ ⟨∇p, v⟩ = (f, v), (1.6)
⟨∇q,u⟩ = 0, (1.7)

for all v ∈ [H1
0 (Ω)]

d and q ∈ L20(Ω). The unique solvability of (1.6)–(1.7) follows directly from that of (1.4)–(1.5).
TheWGmethod refers to a general finite element technique for partial differential equationswhere differential operators

are approximated as distributions for generalized functions. This method was first proposed in [12–14] for second order
elliptic problem, then extended to other partial differential equations [15–20]. Weak functions and weak derivatives can be
approximated by polynomials with various degrees. TheWGmethod uses weak functions and their weak derivatives which
are defined as distributions. The most prominent features of it are:

• The usual derivatives are replaced by distributions or discrete approximations of distributions.
• The approximating functions are discontinuous. The flexibility of discontinuous functions gives WG methods many ad-

vantages, such as high order of accuracy, high parallelizability, localizability, and easy handling of complicated geome-
tries.

The above features motivate the use of WG methods for the Stokes equations. It can easily handle meshes with hanging
nodes, elements of general shapes with certain shape regularity and ideally suited for hp-adaptivity. In [21], Wang et al.
consideredWGmethods for the Stokes equations (1.4)–(1.5). Similarly, in [18], theypresentedWGmethods for theBrinkman
equations, which is a model with a high-contrast parameter dependent combination of the Darcy and Stokes models. The
numerical method of [18] is based on the traditional gradient-divergence variational form for the Brinkman equations.
In [22], we presented a newWG scheme based on the gradient–gradient variational form. It is shown that this scheme is suit
for the mixed formulation of Darcy which would present a better approximation for this case. In fact, for complex porous
media with interface conditions, people often use Brinkman–Stokes interface model to describe this problem, which is an
ongoing work for us now. In order to present a more efficient WG scheme, we prefer to utilize this gradient–gradient weak
form to approximate the model. In order to unify the weak form of this interface problem, we need the numerical analysis
results of this form for Stokes problem. However, to the best of our knowledge, the numerical analysis of methods based on
the variational form (1.6)–(1.7) has never been done before. Therefore in this paper, we propose aWGmethod based on the
weak form (1.6)–(1.7) of the primary problem. In addition, if we choose high order polynomials to approximate the model
and use Schur complement to reduce the interior DOF of the velocity and pressure by the boundary DOF, the total DOF of
this new method is less than the scheme of [21].
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