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a b s t r a c t

The semi implicit method for pressure linked equations (SIMPLE) preconditioner is further
generalized to a class of SIMPLE-like (SL) preconditioners for solving saddle point problems
from the steady Navier–Stokes equations. The SL preconditioners can be also viewed as
a generalization of the relaxed deteriorated PSS (RDPSS) preconditioner proposed by Cao
et al. (2015). Convergence analysis of the corresponding SL iteration is presented and the
optimal iterationparameter is obtainedbyminimizing the spectral radius of the SL iteration
matrix. Moreover, Krylov subspace acceleration of the SL preconditioning is studied.
The SL preconditioned saddle point matrix is analyzed. Results about eigenvalue and
eigenvector distributions and theminimal polynomial are derived. Numerical experiments
from ‘‘leaky’’ two dimensional lid-driven cavity problems are given, which show the
advantages of the SL preconditioned GMRES over the DPSS and RDPSS preconditioned ones
for solving saddle point problems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Consider the incompressible Navier–Stokes equations of the form:
−ν1u + u · ∇u + ∇p = f, in Ω,
∇ · u = 0, in Ω,
u = g, on ∂Ω,

(1.1)

where Ω ⊂ R2 (or R3) is an open bounded domain with boundary ∂Ω . Here, ν > 0 is the viscosity parameter, ∆ is the
vector Laplacian,∇ is the gradient,∇ ·u is the divergence of u, f is a given external force field and g is the Dirichlet boundary
data. The goal is to find the unknown velocity and pressure fields u and p. The convective term u · ∇u makes this system
nonlinear. Linearization of the Navier–Stokes system (1.1) by Picard fixed-point iteration results in a sequence of Oseen
problems of the form

−ν1u + w · ∇u + ∇p = f, in Ω,
∇ · u = 0, in Ω,
u = g, on ∂Ω,

(1.2)

where the divergence free fieldw is the velocity field obtained from the previous Picard iteration step.
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Spatial discretizations of the Oseen equations (1.2) using the Ladyzhenskaya–Babuša–Brezzi (LBB) stable finite element
methods [1] result in the saddle point problems of the following structure:

A+X =


A BT

B 0


u
p


=


f
g


≡ c+, (1.3)

where now u and p represent discrete velocity and pressure, respectively. A is the discretization of the diffusion and
convection terms, BT is the discrete gradient, B is the discrete divergence, and f and g contain forcing and boundary terms.
In general, A ∈ Rn×n is a positive real matrix, i.e., its symmetric part is positive definite, B ∈ Rm×n (m < n) is a matrix of
full rank, f ∈ Rn and g ∈ Rm. Negativing the second block row of (1.3) equivalently yields the nonsymmetric saddle point
problems

AX =


A BT

−B 0


u
p


=


f

−g


≡ c. (1.4)

The nonsymmetric formulation (1.4) is especially natural when A is nonsymmetric, but positive real. In fact, A is positive
stable, i.e., the eigenvalues of A have positive real parts, see [2]. This can be advantageous when using certain Krylov
subspace methods, like GMRES.

A variety of scientific computing and engineering applications can derive the augmented linear system (1.3) or (1.4),
for example, computational fluid dynamics, mixed finite element approximation of elliptic PDEs, weighted and equality
constrained least squares estimation. See [3–5] and the references therein for a broad overviewof applications andnumerical
solution techniques of saddle point problems.

Due to the large and sparse structure of its coefficient matrix, iteration methods are more attractive for solving the
saddle point problem (1.3) or (1.4). A large amount of efficient methods have been presented in the literature, such as
Uzawa-typemethods [6–10], Hermitian and skew-Hermitian splittingmethods [11–14], SIMPLE-typemethods [15,5,16–18]
and so forth. Meanwhile, Krylov subspace methods [19,20] are considered more efficient in general. However, they are
not competitive without good preconditioners to speed up their convergence. Important and efficient preconditioners
include block and approximate Schur complement preconditioners [21–24], constraint preconditioners [25–27], augmented
Lagrangian preconditioners [28–32], HSS preconditioners [2,33–37] and so on.

In [36], based on the factorized form of the deteriorated PSS (DPSS) preconditioner [35]:

PDPSS =
1
2α


αI + A 0

0 αI


αI BT

−B αI


(1.5)

for the nonsymmetric saddle point problem (1.4), Cao et al. proposed the relaxed DPSS (RDPSS) preconditioner structured
as

PRDPSS =
1
α


A 0
0 αI


αI BT

−B 0


=

 A
1
α
ABT

−B 0

 , (1.6)

which is much closer to the saddle point matrix A compared with PDPSS. Here, α > 0 and I denotes identity matrix of
proper size. Convergence of the corresponding RDPSS iteration is analyzed and the optimal parameter which minimizes the
spectral radius of the iteration matrix is derived in [36]. Besides, some spectrum properties of the RDPSS preconditioned
matrix P −1

RDPSSA are also described there.
In [18], the SIMPLE preconditioner for saddle point problem (1.3) was presented with the following structure

PSIMPLE =


A AD−1BT

B 0


, (1.7)

with D = diag(A) being the diagonal part of A. Eigenvalue analysis of the preconditioned matrix P −1
SIMPLEA+ has been

presented in [18]. Some eigenvalue bounds and the estimation for the spectral condition number are also given. We see
that the RDPSS preconditioner (1.6) is somewhat similar to the SIMPLE preconditioner (1.7).

In this paper, a new generalized variant of the RDPSS preconditioner (1.6), which resembles the SIMPLE preconditioner
(1.7), is presented for the nonsymmetric saddle point problem (1.4). We call it SIMPLE-like (SL) preconditioner, which is
given by:

PSL =

 A
1
α
AQ−1BT

−B 0

 , (1.8)

with α > 0 and Q being an approximation of A. It is obvious that this preconditioner reduces to the RDPSS preconditioner
when Q = I . Convergence properties of the corresponding SL iteration are analyzed and the optimal iteration parameter
is obtained. Moreover, spectral properties of the SL preconditioned matrix P −1

SL A are studied. Compared with the RDPSS



Download English Version:

https://daneshyari.com/en/article/4637894

Download Persian Version:

https://daneshyari.com/article/4637894

Daneshyari.com

https://daneshyari.com/en/article/4637894
https://daneshyari.com/article/4637894
https://daneshyari.com

