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a b s t r a c t

In this paper, a finite element Galerkin method is applied to equations of motion arising
in the Kelvin–Voigt viscoelastic fluid flow model, when the forcing function is in L∞(L2).
Some a priori estimates for the exact solution, which are valid uniformly in time as t → ∞

and even uniformly in the retardation time κ an κ → 0 are derived. It is shown that the
semidiscretemethod admits a global attractor. Further, with the help of a priori bounds and
Sobolev–Stokes projection, optimal error estimates for the velocity in L∞(L2) and L∞(H1)-
norms and for the pressure in L∞(L2)-norm are established. Since the constants involved
in error estimates have an exponential growth in time, therefore, in the last part of the
article, under certain uniqueness condition, the error bounds are established which are
valid uniformly in time. Finally, some numerical experiments are conductedwhich confirm
our theoretical findings.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following systemof partial differential equations arising in the Kelvin–Voigtmodel of viscoelastic fluid flow:

∂u
∂t

+ u · ∇u − κ1ut − ν1u + ∇p = f(x, t), x ∈ Ω, t > 0, (1.1)

and incompressibility condition

∇ · u = 0, x ∈ Ω, t > 0, (1.2)

with initial and boundary conditions

u(x, 0) = u0 inΩ, u = 0, on ∂Ω, t ≥ 0, (1.3)

where,Ω is a bounded convex polygonal or polyhedral domain in Rd, d = 2, 3 with boundary ∂Ω . Here, ν is the coefficient
of kinematic viscosity and κ is the retardation time or the time of relaxation of deformations. In the context of viscoelastic
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fluid, thismodelwas first introduced by Pavlovskii [1],who called it as amodel describing themotion ofweakly concentrated
water-polymer solution. It was called Kelvin–Voigt model by Oskolkov [2] and his collaborators. Subsequently, Cao et al. [3]
proposed it as a smooth, inviscid regularization of the 2D and 3D-Navier–Stokes equations. For applications of such models
in organic polymer and food industry, and in the mechanisms of diffuse axonal injury, etc., we refer to [4–6].

Earlier, based on the analysis of Ladyzhenskaya [7] in the context of Navier–Stokes equations, Oskolkov [8,9] have proved
existence of a unique ‘almost’ classical solution in finite time interval for the problem (1.1)–(1.3). Subsequently, further
investigations on solvability were continued by Oskolkov and his group members, see [10,11].

On numerical analysis of such problems, Oskolkov et al. [12] have discussed the convergence analysis of the spectral
Galerkin approximation to (1.1)–(1.3) for all t ≥ 0 assuming that the exact solution is asymptotically stable as t → ∞.
Subsequently, Pani et al. [13] have applied a variant of nonlinear semidiscrete spectral Galerkin method and optimal error
estimates are proved. It is, further, shown that a priori error estimates are valid uniformly in time under uniqueness
assumption. Recently, Bajpai et al. [14] have applied finite element Galerkin methods for the problem (1.1)–(1.3) with the
forcing function f = 0. They have proved a priori bounds for the exact solution in 3D and established exponential decay
property. With an introduction of the Sobolev–Stokes projection, they have derived optimal error estimates, which again
preserve the exponential decay property. In [15], completely discrete schemes which are based on both backward Euler and
second order backward difference methods are analyzed and optimal error bounds which again preserve exponential decay
property are established. For related articles in the context of Oldroyd viscoelastic model, we refer to [16–24].

In this paper, we, further, continue the investigation on finite element approximations to the problem (1.1)–(1.3) when
the non-zero forcing function f belongs to L∞(L2). This is crucial, particularly, in the study of the dynamical system
(1.1)–(1.3), when the forcing function is assumed to be time independent. The major results obtained in this paper are
summarized as follows:

(i) New regularity results for the solution of (1.1)–(1.3) even in 3D, which are valid uniformly in time are derived and as a
consequence, existence of a global attractor is proved. It is further shown that these estimates hold uniformly in κ as
κ → 0.

(ii) When f is independent of time, it is, further, established that the semi-discrete finite element method admits a discrete
global attractor.

(iii) Based on the Sobolev–Stokes projection introduced earlier in [14], optimal error estimates for the semidiscrete Galerkin
approximations to the velocity in L∞(L2)-norm as well as in L∞(H1

0)-norm and to the pressure in L∞(L2)-norm are
derived with error bounds depending on exponential in time.

(iv) Moreover, it is proved under uniqueness assumption that error estimates are valid uniformly in time.
(v) Under assumption κ = O(h2δ), δ > 0 small, it is shown that the error analysis given in (iii)–(iv) yields quasi-optimal

estimates.
(vi) Numerical experiments are conducted to confirm our theoretical findings. It is, further, established that the order of

convergence does not deteriorate for small κ confirming results in (v).

Note that for (i), exponential weight functions in time are used which help us to derive regularity result for all t > 0.
A special care is taken to show that these estimates are valid uniformly in κ as κ → 0. When f is independent of time,
based on uniform estimates in time existence of a global attractor is shown for the semidiscrete scheme. For (iii), a use of
Sobolev–Stokes projection as an intermediate projection helps us to retrieve optimal error estimates for the velocity vector
in L∞(L2)-norm. When either f = 0 or f = O(e−α0t), we derive, as in [14], exponential decay property not only for the
solution, but also for error estimates.

This paper is organized as follows. In Section 2, we discuss the weak formulation and state some basic assumptions.
Section 3 is devoted to development of a priori bounds for the exact solutions. In Section 4, we describe the semidiscrete
Galerkin approximations and derive a priori estimates with discrete global attractor for the semidiscrete solutions. In
Section 5, we establish optimal error estimates for the velocity. Section 6 deals with the optimal error estimates for the
pressure. In Section 7, results of numerical experiments, which confirm our theoretical estimates, are established.

2. Preliminaries and weak formulation

In this section, we define Rd, (d = 2, 3)-valued function spaces using boldface letters as

H1
0 = (H1

0 (Ω))
d, L2 = (L2(Ω))d and Hm

= (Hm(Ω))d,

where L2(Ω) is the space of square integrable functions defined in Ω with inner product (φ, ψ) =

Ω
φ(x)ψ(x) dx and

norm ∥φ∥ =

Ω

|φ(x)|2 dx
1/2. Further, Hm(Ω) denotes the standard Hilbert Sobolev space of order m ∈ N+ with norm

∥φ∥m =


|α|≤m


Ω

|Dαφ|
2 dx

1/2
. Note that H1

0 is equipped with a norm

∥∇v∥ =


d

i,j=1

(∂jvi, ∂jvi)

1/2

=


d

i=1

(∇vi,∇vi)

1/2

.
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