Positive semi-definiteness and sum-of-squares property of fourth order four dimensional Hankel tensors

Yannan Chen ${ }^{\text {a }}$, Liqun Qi ${ }^{\text {b,* }}$, Qun Wang ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, China
${ }^{\text {b }}$ Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

A R TICLE INFO

Article history:

Received 14 April 2015
Received in revised form 13 January 2016

MSC:

15A18
15A69

Keywords:

Hankel tensor
Generating vector
Sum of squares
Positive semi-definiteness
PNS-free

Abstract

A symmetric positive semi-definite (PSD) tensor, which is not sum-of-squares (SOS), is called a PSD non-SOS (PNS) tensor. Is there a fourth order four dimensional PNS Hankel tensor? The answer for this question has both theoretical and practical significance. Under the assumptions that the generating vector \mathbf{v} of a Hankel tensor \mathcal{A} is symmetric and the fifth element v_{4} of \mathbf{v} is fixed at 1 , we show that there are two surfaces M_{0} and N_{0} with the elements $v_{2}, v_{6}, v_{1}, v_{3}, v_{5}$ of \mathbf{v} as variables, such that $M_{0} \geq N_{0}, \mathcal{A}$ is SOS if and only if $v_{0} \geq M_{0}$, and \mathcal{A} is PSD if and only if $v_{0} \geq N_{0}$, where v_{0} is the first element of \mathbf{v}. If $M_{0}=N_{0}$ for a point $P=\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top}$, there are no fourth order four dimensional PNS Hankel tensors with symmetric generating vectors for such $v_{2}, v_{6}, v_{1}, v_{3}, v_{5}$. Then, we call such P a PNS-free point. We prove that a 45 -degree planar closed convex cone, a segment, a ray and an additional point are PNS-free. Numerical tests check various grid points and report that they are all PNS-free.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In 1888, young Hilbert [1] proved that for homogeneous polynomials, only in the following three cases, a positive semi-definite (PSD) form definitely is a sum-of-squares (SOS) polynomial: (1) $m=2$; (2) $n=2$; (3) $m=4$ and $n=3$, where m is the degree of the polynomial and n is the number of variables. Hilbert proved that in all the other possible combinations of n and even m, there are PSD non-SOS (PNS) homogeneous polynomials. The most well-known PNS homogeneous polynomial is the Motzkin function [2] with $m=6$ and $n=3$. Other examples of PNS homogeneous polynomials were found in [3-6].

A homogeneous polynomial is uniquely corresponding to a symmetric tensor [7]. For a symmetric tensor, m is its order and n is its dimension. One important class of symmetric tensors is the Hankel tensor. Hankel tensors have important applications in signal processing [8-10], automatic control [11], and geophysics [12,13]. For example, Papy et al. [14,15] proposed a novel Hankel tensor model to analyze time-domain signals in nuclear magnetic resonance spectroscopy, which is used for brain tumor detection [16]. A fast computational framework for products of a Hankel tensor and vectors is addressed in Ding et al. [17]. In geophysics, Trickett et al. [13] established a new multidimensional seismic trace interpolator by using Hankel tensors.

In mathematical science, Luque and Thibon [18] studied the Hankel hyperdeterminants. Xu [19] studied the spectra of Hankel tensors and gave some upper bounds and lower bounds for the smallest and the largest eigenvalues. In [20], two

[^0]classes of PSD Hankel tensors were identified. They are even order strong Hankel tensors and even order complete Hankel tensors. It was proved in [21] that complete Hankel tensors are strong Hankel tensors, and even order strong Hankel tensors are SOS tensors. It was also shown there that there are SOS Hankel tensors and PSD Hankel tensors, which are not strong Hankel tensors. Thus, a question was raised in [21]: Are all PSD Hankel tensors SOS tensors [22,23]? If there are no PSD non-SOS Hankel tensors, the problem for determining a given even order Hankel tensor is PSD or not can be answered by solving a semi-definite linear programming problem [21,24,25].

We may call the problem raised by the above question as the Hilbert-Hankel problem. In a certain sense, it is the Hilbert problem with a Hankel constraint. According to Hilbert [1,6], one case with low values of m and n, in which there are PNS homogeneous polynomials, is that $m=6$ and $n=3$. In [26], the Hilbert-Hankel problem with order six and dimension three was studied. Four special cases were analyzed. Thousands of random examples were checked. No PNS Hankel tensors of order six and dimension three were found in [26]. Theoretically, it is still an open problem whether there are PNS Hankel tensors of order six and dimension three or not.

According to Hilbert [1,6], another case with low values of m and n, in which there are PNS homogeneous polynomials, is that $m=n=4$. In this paper, we consider this special case in a Hankel context. Let $\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{12}\right)^{\top} \in \mathfrak{R}^{13}$. A fourth order four dimensional Hankel tensor $\mathcal{A}=\left(a_{i_{1} i_{2} i_{3} i_{4}}\right)$ is defined by

$$
a_{i_{1} i_{2} i_{3} i_{4}}=v_{i_{1}+i_{2}+i_{3}+i_{4}-4},
$$

for $i_{1}, i_{2}, i_{3}, i_{4}=1,2,3,4$. The corresponding vector \mathbf{v} that defines the Hankel tensor \mathcal{A} is called the generating vector of \mathcal{A}. For $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top} \in \mathfrak{R}^{4}$, a Hankel tensor \mathcal{A} uniquely defines a Hankel polynomial

$$
\begin{equation*}
f(\mathbf{x}) \equiv \mathcal{A} \mathbf{x}^{\otimes 4}=\sum_{i_{1}, i_{2}, i_{3}, i_{4}=1}^{4} a_{i_{1} i_{2} i_{3} i_{4}} x_{i_{1}} x_{i_{2}} x_{i_{3}} x_{i_{4}}=\sum_{i_{1}, i_{2}, i_{3}, i_{4}=1}^{4} v_{i_{1}+i_{2}+i_{3}+i_{4}-4} x_{i_{1}} x_{i_{2}} x_{i_{3}} x_{i_{4}} . \tag{1}
\end{equation*}
$$

If $f(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in \mathfrak{R}^{4}$, the Hankel tensor \mathcal{A} is called positive semi-definite (PSD). If $f(\mathbf{x})$ can be represented as a sum of squares of quadratic homogeneous polynomials, the Hankel tensor \mathscr{A} is called sum-of-squares (SOS). Clearly, \mathcal{A} is PSD if it is SOS.

In the next section, we present some necessary conditions for the positive semi-definiteness of fourth order four dimensional Hankel tensors.

We may see that the role of v_{j} is symmetric in $f(\mathbf{x})$. In Section 3, we assume that

$$
\begin{equation*}
v_{j}=v_{12-j} \tag{2}
\end{equation*}
$$

for $j=0, \ldots, 5$. Under this assumption, by the results of Section 2, if \mathscr{A} is PSD, we have $v_{0}=v_{12} \geq 0$ and $v_{4}=v_{8} \geq 0$. Moreover, if $v_{4}=v_{8}=0$ and \mathscr{A} is PSD, \mathcal{A} is SOS. Thus, we may only consider the case that $v_{4}=v_{8}>0$. Since \mathcal{A} is PSD or SOS or PNS if and only if $\alpha \mathcal{A}$ is PSD or SOS or PNS respectively, where α is an arbitrary positive number, we may simply assume that

$$
\begin{equation*}
v_{4}=v_{8}=1 \tag{3}
\end{equation*}
$$

Next, we show that there is a function $\eta\left(v_{5}, v_{6}\right)$ such that $\eta\left(v_{5}, v_{6}\right) \leq 1$ if \mathcal{A} is PSD. We propose that there are two functions $M_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right) \geq N_{0}\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)$, defined for $\eta\left(v_{5}, v_{6}\right)<1$, such that \mathcal{A} is SOS if and only if $v_{0} \geq M_{0}$, and \mathcal{A} is PSD if and only if $v_{0} \geq N_{0}$. If $M_{0}=N_{0}$ for some $v_{2}, v_{6}, v_{1}, v_{3}, v_{5}$, then there are no fourth order four dimensional PNS Hankel tensors for such $v_{2}, v_{6}, v_{1}, v_{3}, v_{5}$ under the symmetric assumption (2). We call such a point $P=\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top} \in \mathfrak{R}^{5}$ a PNS-free point of fourth order four dimensional Hankel tensors, or simply a PNS-free point. We call the set of points in \mathfrak{R}^{5}, satisfying $\eta\left(v_{5}, v_{6}\right)<1$, the effective domain of fourth order four dimensional Hankel tensors, or simply the effective domain, and denote it by S. We show that if all the points in S are PNS-free, then there are no fourth order four dimensional PNS Hankel tensors with symmetric generating vectors.

In Section 4, we show that a point P in S is PNS-free if there is a value M, such that when $v_{0}=M, f_{0}(\mathbf{x}) \equiv f(\mathbf{x})$ has an SOS decomposition, and $f_{0}(\overline{\mathbf{x}})=0$ for $\overline{\mathbf{x}}=\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \bar{x}_{4}\right)^{\top} \in \mathfrak{R}^{4}$ with $\bar{x}_{1}^{2}+\bar{x}_{4}^{2} \neq 0$. We call such a value M, such an SOS decomposition of $f_{0}(\mathbf{x})$, and such a vector $\overline{\mathbf{x}}$ the critical value, the critical SOS decomposition and the critical minimizer of \mathcal{A} at P, respectively. Then, we show that the segment $L=\left\{\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top}=(1,1, t, t, t)^{\top}: t \in[-1,1]\right\}$ is PNS-free. We conjecture that this segment is the minimizer set of both M_{0} and N_{0}. Then, we show that the 45° planar closed convex cone $C=\left\{\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top}=(a, b, 0,0,0)^{\top}: a \geq b \geq 1\right\}$, the ray $R=\left\{\left(v_{2}, v_{6}, v_{1}, v_{3}, v_{5}\right)^{\top}=(a, 0,0,0,0)^{\top}: a \leq 0\right\}$ and the point $A=(1,0,0,0,0)^{\top}$ are also PNS-free. We illustrate L, C, R and A in Fig. 1.

In Section 5, numerical tests check various grid points, and find that $M_{0}=N_{0}$ there. Thus, they are also PNS-free. Therefore, numerical tests indicate that there are no fourth order four dimensional PNS Hankel tensors with symmetric generating vectors.

Some final remarks are made in Section 6.

https://daneshyari.com/en/article/4637904

Download Persian Version:

https://daneshyari.com/article/4637904

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: ynchen@zzu.edu.cn (Y. Chen), maqilq@polyu.edu.hk (L. Qi), wangqun876@gmail.com (Q. Wang).

