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a b s t r a c t

Output analysis methods of steady-state simulations have extensively been subject of
study to evaluate the performance when estimating the mean. However, smaller efforts
have been placed on performance evaluation of these methods to estimate variance
and quantiles. In this paper, we empirically evaluate the performance of output analysis
methods based on multiple replications and batches to estimate mean, variance and
quantile with the same set of data. The evaluation of the performance of the methods is
based on the empirical coverage of the true value using confidence intervals, the average
bias, relative error and mean squared error. The methods are applied to estimate the
average, variance and quantiles of waiting time in an M/M/1 queue. The results show
that the methods based on non-overlapping batches perform consistently well in all the
metrics. The performance of the other methods varies depending on the metric and the
parameters of the simulation. In addition, we provide another example of a non-geometric
ergodic Markov chain to show that asymptotically valid confidence intervals for quantiles
can be obtained using batches and replications.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Typically, researchers and analysts focus on the estimation of the mean in steady-state simulations. However, there are
other performance measures that might be of interest, such as variance and quantiles, which are considered as measures of
risk. Steady-state simulations are of particular interest for researchers due to the different approaches to analyze the output
of this type of models and the variables that the analysts must decide on, such as number of replications/batches and run
length. In addition, steady-state simulations are applied in a wide variety of queueing systems, such as communications
(e.g., see [1]), production systems (e.g., see [2]), logistics (e.g., see [3]) and healthcare (e.g., see [4]).

In this paper we are interested in comparing the effectiveness of multiple replications with and without warm-up, non-
overlapping batches and spaced-batches for estimating the mean, variance and quantile of a steady-state simulation. The
results shown in this paper extend and correct the preliminary results published in [5,6]. In particular, we correct an error
in the code that underestimated the coverage performance of the methods, we include the analysis of multiple replications
with and without warm up period and we include the analysis of the mean squared error as a performance measure of the
output analysis methods. In addition, we expand the analysis of quantile estimation in steady-state for a non-geometric
ergodic Markov chain and empirically show that the validity of the batch-based method is valid under weaker conditions
than geometric ergodicity.
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Multiple replications consist of running multiple independent runs of the same model [7]. Usually, multiple replications
are accompaniedwith awarm-up period to reduce initialization bias [8]. Therefore, the data collected during thewarm-up is
discarded for analysis. However, warm upmay not be needed if the initial conditions are well selected, as found in [9]. Given
that the effect of the warm up depends on the replication length, we include in this paper the analysis of the performance
using multiple replications with warm-up period (MR) and using multiple replications without warm-up (MR0).

On the other hand, the method of non-overlapping batches (B) consists of running a single replication, which is divided
in batches of equal size [7]. The batch size must be large enough to ensure almost independence of data. Large few batches
are often preferred to small several batches because of correlation and normality requirements [10].

A different way to implement batch-based analysis is through spaced-batches (SB) which consist of having a space of
observations between successive batches. The observations occurring in the spaces are not considered for the analysis. The
purpose of SB is to reduce dependence amongst batches.

The effectiveness of multiple replications and batches has been widely discussed for estimating themean in steady-state
simulations. For example, batch means have been empirically shown to be superior to multiple replications in coverage
and confidence interval’s half-width [11]. The advantages of both methods have been combined in a methodology called
replicated batchmeans designed to improve the coverage of (discrete state space) nearly decomposableMarkov chains [12].

Estimation of variance has been discussed in methodologies for estimating a nonlinear function of a steady-state mean.
Thesemethodologies suggest using jackknife to reduce the bias andmean squared error of point estimators [13]. In addition,
delta method has been used to show the asymptotic validity of confidence intervals based on the batch means method
(see [13,14]).

Methods for steady-state quantile estimation have also been discussed in the literature. For example, a batch quantile
methodology is discussed in [15–17]. A bias expansion for the jackknife, classical and batch means estimators for steady-
state quantiles are provided in [18]. In addition, a simulation-based quantile estimator whose probability of not lying in
a prespecified vicinity of the true quantile quickly converges to zero with the sample size is presented in [19]. Methods
for estimating steady-state means have been modified to estimate steady-state quantiles, such as the sequential procedure
proposed in [20].

Muñoz shows that the batch-based methods for quantile estimation are asymptotically valid under the assumption of
geometric ergodicity of the underlying Markov chain (see [18]). In this paper, we successfully applied MR and B output
analysis methods for estimating the quantiles of a Markov chain with non-geometric ergodicity. Our experiments suggest
that these estimation methodologies may be asymptotically valid under weaker conditions.

2. Methodology

The simulation models used in our experiments were implemented in Excel using Visual Basic for Applications and a
Mersenne twister pseudo-random number generator [21] coded in C++. Furthermore, the output analysis methods were
implemented for allowing the estimation of all three performance measures using the same data of each run.

In order to make a fair comparison of the three output analysis methods under study, the experiments have the same
number of observations. Thus, the MR (which includes warm-up), MR0 (no warm-up), SB and B use the same simulation
length for each scenario. Furthermore, the length of the warm-up period inMR is also the number of observations between
consecutive batches in SB.

The formulations used for constructing the confidence intervals are asymptotically valid. These formulations are based
on the following parameters:

m = Total number of observations in the simulation experiment,
n = Number of replications forMR and MR0 or number of batches for B or SB,
k = Number of observations per replication for MR0 and MR (including warm-up), or number of observations
per batch for B or SB (including space between batches), m = kn,
d = Number of observations in the warm-up period for MR or number of observations in the space between batches
for SB(d = 0 for B and forMR0),
Yij = Value of the jth observation of replication i forMR (batch i for B or SB), i = 1, 2, . . . , n, j = 1, 2, . . . , k.

The point estimators for the (steady-state) mean, variance and α-quantile are defined by
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q̂α = X⌈αn(k−d)⌉, (3)
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