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a b s t r a c t

In this paper, we present spectral methods in order to solve wave equation subject to a
locally distributed nonlinear damping. Thanks to the efficiency and the accuracy of spectral
method, we can check that discrete energy decreases to zero as time goes to infinity,
uniformlywith respect to themesh sizewhen the damping is supported in a suitable subset
of the domain of consideration. We prove the convergence of the full Fourier–Galerkin
discretization. Thus, we apply our schemes to illustrate the uniform discrete energy decay
rates of the solution for a wide range of damping functions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The aimof this paper is to study the efficiency and accuracy of spectralmethods to solvewave equation subject to a locally
distributed nonlinear damping. In particular, we want to check numerically the polynomial energy decay of the solution of
the dampedwave equation to zero as time goes to infinity when the damping is supported in a suitable subset of the domain
of consideration.

When we use finite-difference space discretization, the corresponding semi-discrete energy do not decay exponentially
and uniformly (with respect to the mesh size h) to zero as time goes to infinity (with the exception of damping coefficient
uniformly positive on the full domain) as it is proved in [1,2].

Namely, consider the system corresponding to a linear damping term
αutt −1u + a(x)ut = 0, x ∈ Ω, t > 0,
u = 0, x ∈ Γ , t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.1)

whereΩ is an open and bounded domain of Rn with n ∈ N and a : Ω → R is a bounded nonnegative function defined on
ω a nonempty open subset ofΩ , satisfying a(x) > a0 > 0 on ω.

The coefficient α in front of the time derivative is introduced such that the equation is dimensionally consistent. Without
loss of generality, we can set this coefficient α = 1 (by changing time scale).

It is well known (see [3–5]) that the energy of the damped wave equation decreases as time increases. More precisely,
the energy of solutions of (1.1) satisfies, for some T0 > 0

E(t) ≤ E(0) exp

1 −

t
t0


, t ≥ T0.
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Furthermore, it is known that if there is a positive constant C and time T such that

E(0) ≤ C
 T

0


Ω

a(x)|ut(t)|2dxdt,


for every solution of (1.1)(cf. [6]), the exponential decay is obtained. This inequality, called observability inequality, is valid
(for n ≥ 2) if and only if the damping subset ω satisfies the geometric control condition of Bardos et al. (cf.[7]).

Stability for the wave equation

utt −1u + a(x)ut = 0, x ∈ Ω, t > 0

whereΩ is a bounded domain in Rn, n ∈ N, has been studied for long time by many authors.
Concerning linear wave equations, Rauch and Taylor [8] are among the pioneers in investigating the long time behavior

of weak solutions of the Cauchy problem for the wave equation on compact manifold without boundary, when g(s) = s,
assuming that a ∈ C∞ is a bounded nonnegative function. We say that the Rauch–Taylor condition holds if there exists
a time T0 such that any geodesic (also called ray of the geometric optics) with length greater than T0 meets the set where,
roughly speaking, a(x) > 0. Later, Bardos et al. in [7] introduce generalized rays: if a ray arrives at the boundary transversally,
its continuation is a reflected ray, and if a ray encounters the boundary at a not nondiffractive point, its continuation does
not ‘‘feel’’ the boundary. Using a duality argument, the authors obtain exact controllability results for the whole Hs-scale of
spaces of controls. They also prove the uniform stabilization by a dissipative boundary condition.

In this context, it is important to cite Komornik’s book [9], who uses the strategy based on energy inequalities which
leads to computable decay rates for dissipative systems, under some regularity assumptions imposed on the damping. The
paper of Martinez [10] provides a general method, though they are not optimal for important cases.

In contrast with the majority of the papers written on the subject, the paper by Lasiecka and Tataru [11] makes no
assumption on the damping at the origin, except for the continuity and monotonicity. This was the very first paper to
establish optimal decay rates obeyed by the energy function, without any growth assumptions imposed at the dissipation
at the origin. The main trust of that method is to reduce the problem of computations of decay rates for a PDE to solving
an appropriate-explicitly given-ODE of monotone type. In Cavalcanti et al. [12] explicit decay rates are obtained. The theory
presented allows to consider both superlinear and sublinear behaviors at the origin of the dissipation in the presence of
unstructured sources. This is accomplished by following the method presented in [11].

Lasiecka and Toundykov, in theirworks [13,14], consider thewave equationwith localized damping and source term. The
dissipation acts on small subsets of the domain, near a portion of the boundary. They study the asymptotic behavior as t goes
to infinity and related decay rates for the corresponding solutions. In [15], the author studies the rate of decay of solutions
of the wave equation with localized nonlinear damping without any growth restriction and without any assumption on the
dynamics. Providing regular initial data, the asymptotic decay rates are obtained by solving a nonlinear ODE. For all these
reasons, we propose here a spectral method combined with an explicit in time scheme to solve the locally 2D damped wave
equation. We emphasize that the damping term is not linear and that the damping coefficient can be null on a part (with
non null measure) of the domain. In this work, we consider the damping function g(x) = x3, but we emphasize that we
can adapt the proof of the convergence result for any odd functions g satisfying the hypothesis (H.2) given below. We thus
study the full discretization of this problem both in the space and time variables in the case where the domainΩ is a square.
As usual, discretization in both space and time of evolution equations leads to unstable or conditionally stable schemes.
By using energy method, we give sufficient conditions for stability and we prove the convergence of spectral approximate
solutions toward those of the nonlinear damped wave equations as h → 0. Of course the proof is valid in 1D and can be
extended to the 3D cases butwithmore restrictive stability conditions (due to the Sobolev inclusion). Finally, we numerically
illustrate the uniform (with respect to the mesh size) decay rates of the energy associated with the problem (2.1) for a wide
range of damping functions and coefficients. Especially we first observe that the Chebyshev approximation is better suited
than Fourier approximation (because of the treatment of the boundary conditions) and that the effect of damping is more
effective if it is localized near the boundary ofΩ rather that insideΩ .

Our paper is organized as follows. In Section 2, we briefly recall the main results about the wave equation with locally
distributed nonlinear damping. In Section 3, we describe the numerical scheme and we remind the main results about
Fourier approximation. Section 4 is devoted to the derivation of stability lemma and to the convergence result, we adapt to
our case the proof of convergence theorem given in [16]. Section 5 contains few numerical experiments.

2. Wave equation with nonlinear damping

In this section,we are going to present some results concerning the existence and asymptotic behavior for the solutions ofutt −1u + a(x)g(ut) = 0, x ∈ Ω, t > 0,
u = 0, x ∈ Γ , t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(2.1)

whereΩ is an open and bounded domain of Rn, n ∈ N, a : Ω → R and g : R → R are functions satisfying
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