Random search of stable member in a matrix polytope
 Şerife Yılmaz ${ }^{\text {a,* }}$, Taner Büyükköroğlu ${ }^{\text {b }}$, Vakif Dzhafarov ${ }^{\text {b }}$
 ${ }^{\text {a }}$ The Department of Elementary Education, Faculty of Education, Mehmet Akif Ersoy University, Istiklal Campus, Burdur 15030, Turkey
 ${ }^{\text {b }}$ Department of Mathematics, Faculty of Science, Anadolu University, Eskisehir 26470, Turkey

A R TICLE INFO

Article history:

Received 28 February 2014
Received in revised form 15 January 2016

MSC:

15A15
15A24
93D30
93D20

Keywords:

Stable matrix
Matrix polytope
Random search
Bialternate product

Abstract

Given a matrix polytope we consider the existence problem of a stable member in it. We suggest an algorithm in which part of uncertainty parameters is chosen randomly. Applications to affine families and 3×3 interval families are considered. A necessary and sufficient condition for the existence of a stable member is given for general interval families with nonnegative off-diagonal intervals.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let $A=\left(a_{i j}\right)$ be an $n \times n$ real or complex matrix. If all eigenvalues of the matrix A lie in the open left half-plane, the matrix A is called Hurwitz stable.

In many practical problems the entries $a_{i j}$ of A are not known and in this case, the family

$$
A(q)=\left(\begin{array}{cccc}
a_{11}(q) & a_{12}(q) & \cdots & a_{1 n}(q) \\
a_{21}(q) & a_{22}(q) & \cdots & a_{2 n}(q) \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1}(q) & a_{n 2}(q) & \cdots & a_{n n}(q)
\end{array}\right), \quad(q \in Q)
$$

is under consideration where the uncertainty vector q belongs to a box

$$
Q=\left\{\left(q_{1}, q_{2}, \ldots, q_{l}\right)^{T} \in \mathbb{R}^{l}: q_{i}^{-} \leq q_{i} \leq q_{i}^{+}, i=1,2, \ldots, l\right\} .
$$

Consider the family

$$
\begin{equation*}
\mathcal{A}=\{A(q): q \in Q\} . \tag{1}
\end{equation*}
$$

[^0]The family (1) is said to be an interval matrix family if each component of q enters into only one entry $a_{i j}(q)$ of $A(q)$, i.e.

$$
\mathcal{A}=\left(\begin{array}{ccc}
q_{11} & \cdots & q_{1 n} \tag{2}\\
\vdots & \ddots & \vdots \\
q_{n 1} & \cdots & q_{n n}
\end{array}\right)
$$

where $q_{11} \in\left[a_{11}, b_{11}\right], \ldots, q_{n n} \in\left[a_{n n}, b_{n n}\right]$.
The family (1) is called an affine family if $A(q)=A_{0}+q_{1} A_{1}+q_{2} A_{2}+\cdots+q_{l} A_{l}$.
The family \mathfrak{A} is said to be robustly stable if every matrix in this family is Hurwitz stable. Robust stability of polynomial matrix families has been considered in [1-3].

A function $f: Q \rightarrow \mathbb{R}$ is said to be multilinear if it is affine-linear with respect to each component of $q \in Q$.
The following theorem expresses the well-known property of a scalar multilinear function defined on a box.
Theorem 1 ([4,5]). Suppose that $Q \subset \mathbb{R}^{l}$ is a box with extreme points $q^{i},(i=1,2, \ldots, k)$ and $f: Q \rightarrow \mathbb{R}$ is multilinear. Then both the maximum and the minimum of f are attained at extreme points of Q. That is,

$$
\begin{aligned}
& \max _{q \in Q} f(q)=\max _{i} f\left(q^{i}\right) \\
& \min _{q \in Q} f(q)=\min _{i} f\left(q^{i}\right)
\end{aligned}
$$

Theorem 1 can be used to find the range interval of a scalar multilinear function $f: Q \rightarrow \mathbb{R}$ defined on a box Q. The Cartesian product of these scalar intervals gives outer approximation of the range of a vector multilinear function.

A parameter dependent polynomial $p(s, q)=a_{0}(q)+a_{1}(q) s+a_{2}(q) s^{2}+\cdots+a_{n}(q) s^{n}$ is called multilinear if all coefficient functions $a_{i}(q)(i=0,1, \ldots, n)$ are multilinear.

Consider the following question: Given a matrix family $\{A(q): q \in Q\}$ is there a stable matrix in it? This problem is important in control theory [6]. For example, for the linear system $\dot{x}=A x+B u$ the feedback $u=K x$ gives the closed loop system $\dot{x}=(A+B K) x$. Is there a feedback K such that the obtained system is asymptotically stable? (that is $A+B K$ is stable). Treating the entries of K as the parameter q, the problem can be reduced to the above one.

The existence of a stable member in a matrix polytope and other related problems has been considered in many works (see [6-10] and references therein).

In $[6,8,9]$ universal numerical methods have been proposed to minimize the spectral abscissa function

$$
\begin{equation*}
\eta(q)=\max _{k} \operatorname{Re} \lambda_{k}(A(q)) \tag{3}
\end{equation*}
$$

The function $\eta(q)$ is non-Lipschitz and non-convex and the corresponding minimization algorithms may get stuck in a local minimum (see Example 2).

In this work we propose random searching algorithm of a stable member for special classes of matrix families. Our approach is a modification of the Monte-Carlo method [11] since part of uncertainties is selected randomly and the remaining part deterministically. We give the applications of this algorithm to affine and 3×3 interval families.

In this paper
(i) For a one-parameter nonlinear $n \times n$ family whole stability region is determined (see Example 1). For a multiparameter family, random search is proposed. It can be considered a nonlinear version (see Example 3) of D-decomposition method from $[6,9,10]$.
(ii) For 3×3 interval family with constant diagonals whole stability region is determined (see Examples 5 and 6). In the case of nonconstant diagonals, random search of a stable member is proposed.
(iii) For $n \times n$ interval family with nonnegative off-diagonal intervals a simple necessary and sufficient condition for the existence of a stable member is obtained (Section 4).

It should be noted that differently from [6,8,9] the results of Sections 2.2 and 3.1 are applicable for lower dimensional systems. For the comparison with the known methods see Section 5 and the end of Examples 1 and 4.

2. Stable member in nonlinear matrix families

In this section we consider the problem of finding a stable member in matrix families. Firstly an one parameter nonlinear family is considered and by using the bialternate product of matrices all of the stable regions are determined. For a multiparameter family we suggest all parameters are chosen randomly with the exception of one chosen parameter, which reduces the problem to a one-parameter case. In this case our result can be considered as a nonlinear version of D-decomposition method from [6,9,10]. See Example 3.

https://daneshyari.com/en/article/4637934

Download Persian Version:
https://daneshyari.com/article/4637934

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: serifeyilmaz@mehmetakif.edu.tr (\$̧. Yılmaz), tbuyukkoroglu@anadolu.edu.tr (T. Büyükköroğlu), vcaferov@anadolu.edu.tr (V. Dzhafarov).

