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a b s t r a c t

We present an iterative algorithm, called the symmetric tensor eigen-rank-one iterative
decomposition (STEROID), for decomposing a symmetric tensor into a real linear combi-
nation of symmetric rank-1 unit-norm outer factors using only eigendecompositions and
least-squares fitting. Originally designed for a symmetric tensor with an order being a
power of two, STEROID is shown to be applicable to any order through an innovative tensor
embedding technique. Numerical examples demonstrate the high efficiency and accuracy
of the proposed scheme even for large scale problems. Furthermore,we showhowSTEROID
readily solves a problem in nonlinear block-structured system identification and nonlinear
state-space identification.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Symmetric tensors arise naturally in various engineering problems. They are especially important in the problem of blind
identification of under-determined mixtures [1–3]. Applications of this problem are found in areas such as speech, mobile
communications, biomedical engineering and chemometrics.

The main contribution of this paper is an algorithm, called the Symmetric Tensor Eigen-Rank-One Iterative
Decomposition (STEROID), that decomposes a real symmetric tensor A into a linear combination of symmetric unit-norm
rank-1 tensors

A = l1 x1 ◦ x1 ◦ · · · ◦ x1 + · · · + lR xR ◦ xR ◦ · · · ◦ xR,

= l1 xd1 + · · · + lR xdR, (1)

with l1, . . . , lR ∈ R and x1, . . . , xR ∈ Rn. The reality of the scalar coefficients l1, . . . , lR is of particular importance in the
nonlinear system identification algorithm presented in Section 5. The ◦ operation refers to the outer product, which we
define in Section 1.1. The notation xdi (i = 1, . . . , R) denotes the d-times repeated outer product. In contrast to other iterative
methods, STEROID does not require any initial guess and, as shown in Section 4, can handle large symmetric tensors. The
minimal R = Rmin that satisfies (1) is called the symmetric rank of A. More information on the rank of tensors can be found
in [4,5] and specifically for symmetric tensors in [6]. The main idea of the algorithm is to first compute a set of vectors
x1, . . . , xR (R ≥ Rmin) through repeated eigendecompositions of symmetric matrices. The coefficients l1, . . . , lR are then

∗ Corresponding author.
E-mail address: kim.batselier@gmail.com (K. Batselier).

http://dx.doi.org/10.1016/j.cam.2016.05.024
0377-0427/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2016.05.024
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2016.05.024&domain=pdf
mailto:kim.batselier@gmail.com
http://dx.doi.org/10.1016/j.cam.2016.05.024


70 K. Batselier, N. Wong / Journal of Computational and Applied Mathematics 308 (2016) 69–82

found from solving a least-squares problem. STEROID was originally developed for symmetric tensors with an order that is
a power of 2. It is however perfectly possible to extend the applicability of the STEROID algorithm to symmetric tensors of
arbitrary order by means of an embedding procedure, which we explain in Section 2.2.

In [7] an algorithm is described that decomposes a symmetric tensor over C using methods from algebraic geometry.
This involves computing the eigenvalues of commuting matrices and as a consequence, the l coefficients obtained from this
method are generally complex numbers. Most attention in the literature is spent in solving the low-rank (typically rank-1)
approximation problem. This problem can be formulated as follows.

Problem 1. Given a dth-order symmetric tensor A ∈ Rn×···×n and a multilinear rank r , find an orthogonal n × r matrix U
and a core tensor S ∈ Rr×···×r that minimizes the Frobenius norm

∥A− S×1 U ×2 U ×3 · · · ×d U∥F ,

where×k denotes the kth-mode product.

The definition of the kth-mode product is given in Section 1.1. Note that the Tucker form S×1 U ×2 U ×3 · · · ×d U is
intrinsically different from (1), since it will also contain terms that are not symmetric. This implies that it is not very
meaningful to compare the number of terms from the Tucker form with the number of terms computed by STEROID.
Algorithms designed specifically for finding solutions to Problem1 that consist of a single symmetric term are the symmetric
higher-order power method (S-HOPM) [8,9] and the shifted version of S-HOPM (SS-HOPM) [10,11]. General low-rank
algorithms are the Quasi-Newton algorithm [12], the Jacobi algorithm [13] and the monotonically convergent algorithm
described in [14].

Another common decomposition is the canonical tensor decomposition (CANDECOMP/PARAFAC) [15,16]. This
decomposition expresses a tensor as the sum of a finite number of rank-1 tensors. The tensor rank can then be defined
as the minimum number of required rank-1 terms. Running a CANDECOMP algorithm such as Alternating Least Squares
(ALS) on a symmetric tensor does not guarantee the symmetry of the rank-1 tensors. Other iterative methods [17], using
nonlinear optimization methods, are able to guarantee the symmetry of the rank-1 terms. These methods however require
the need for an initial guess and the number of computed terms also needs to be decided by the user beforehand. This is
the main motivation for the development of the STEROID algorithm. STEROID is an adaptation for symmetric tensors of
our earlier developed Tensor Train rank-1 SVD (TTr1SVD) algorithm [18], which in turn was inspired by Tensor Trains [19],
and was an independent derivation of PARATREE [20]. In contrast to the iterative methods mentioned above, the STEROID
algorithm does not require an initial guess and the total number of terms in the decomposition follows readily from the
execution of the algorithm.

The outline of this paper is as follows. First, we define some basic notations in Section 1.1. In Section 2 we fully describe
our algorithm by means of a running example, together with the required embedding procedure. Two methods for the
reduction of the size of the least-squares problem in the STEROID algorithm are discussed in Section 3. One method
exploits the symmetry of the tensor, while the other method exploits the structure of the matrix in the least-squares
problem. The algorithm is applied to several examples in Section 4 and compared with the Jacobi algorithm [13], Regalia’s
iterative method described in [14] and the CANDECOMP-algorithm from the Tensorlab toolbox [17]. In Section 5 we show
how STEROID readily solves a problem in nonlinear block-structured system identification [21] and nonlinear state-space
identification [22]. In this setting, it is often desired to recover the internal structure of an identified static nonlinear
mapping [23–25]. More specifically, it will be shown how STEROID can decouple a set of multivariate polynomials f1, . . . , fl
into a collection of univariate polynomials g1, . . . , gn, through both an affine and linear transformation.

1.1. Tensor notations and basics

Wewill adopt the following notational conventions. A dth-order or d-way tensor, assumed real throughout this article, is
a multi-dimensional array A ∈ Rn1×n2×···×nd with elements Ai1 i2...id that can be seen as an extension of the matrix format to
its general dth-order counterpart. Although the wordings ‘order’ and ‘dimension’ seem to be interchangeable in the tensor
community, we prefer to call the number of indices ik (k = 1, . . . , d) the order of the tensor, while the maximal value
nk (k = 1, . . . , d) associated with each index the dimension. A cubical tensor is a tensor for which n1 = n2 = · · · = nd = n.
The inner product between two tensors A, B ∈ Rn1×···×nd is defined as

⟨A, B⟩ =


i1,i2,...,id

Ai1i2...id Bi1i2...id .

The norm of a tensor is often taken to be the Frobenius norm ∥A∥F = ⟨A, A⟩1/2. The kth-mode product of a tensor
A ∈ Rn1×n2×···×nd with a matrix U ∈ Rp×nk is defined by

(A×k U)i1···ik−1jik+1···id =

nr
ik=1

UjikAi1···ik···id ,

such that A×k U ∈ Rn1×···×nk−1×p×nk+1×···×nd . A 3rd-order rank-1 tensor A can always be written as the outer product [16]

A = λ a ◦ b ◦ c with components Ai1 i2 i3 = λ ai1 bi2 ci3
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