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a b s t r a c t

In this paper, we study the numerical methods for the evaluation of two kinds of highly
oscillatory Bessel transforms. Firstly, we rewrite both integrals as the sum of two integrals.
By rewriting the Bessel function as a linear combination of Whittaker W function, we
then transform one of integrals into the Fourier type, which can be transformed into the
integrals on [0,+∞), and can be computed by some proper Gaussian quadrature, which
take into account the asymptotic property of Whittaker W function as x → 0. The other
can be efficiently computed based on the evaluation of special functions. In addition, error
analysis for the presented methods is given. Moreover, we also give an explicit formula
for the integral −


+∞

0
Jν (ωx)
x−τ dx in terms of Meijer G-function, and then apply the method for

the oscillatory Bessel transforms to the computation of highly oscillatory Bessel Hilbert
transforms. Theoretical results and numerical examples demonstrate the efficiency and
accuracy of the proposed methods.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this work, we are concerned with the problem of evaluating the highly oscillatory Bessel transforms of the form

I1[f ] =

 a

0
f (x)Jν(ωx) dx and I2[f ] =


+∞

0
f (x)Jν(ωx) dx, (1.1)

where a > 0, ν is an arbitrary nonnegative real number, and Jν(ωx) is the Bessel function of the first kind of order ν.
It is well known that the integrals (1.1) play an important role in many areas of science and engineering, for example, in
astronomy, optics, quantummechanics, seismology image processing, electromagnetic scattering [1–4]. Both integrals share
the property that the larger the ω, the more oscillatory the integrands. Due to this property, when ω ≫ 1, a prohibitively
large number of quadrature points are needed for the numerical computation of both integrals if one use classical numerical
methods, such as, Simpson rule, Gaussian quadrature, etc.

In the last decades, there has been tremendous interest in developing numericalmethods for the integral
 b
a f (x)Jν(ωx) dx

with a ≥ 0. For the case a > 0, lots of methods have been devised, such as Levin method [5,6], Levin-type method [7],
generalized quadrature rule [8,9], Filon-type method [10], Gauss–Laguerre quadrature [11–13]. For the case a = 0, a
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modified Clenshaw–Curtis method was presented by truncating f (x) by its Chebyshev series approximation in [14]. Based
on a special Hermite interpolant of f (x) at the Clenshaw–Curtis points and the fast computation of modified moments, a
Clenshaw–Curtis–Filon-type method was introduced in [15]. Recently, Chen [16] rewrote the integral in Fourier type, and
then transformed the integral into the forms on [0,+∞) so that the integrand does not oscillate and decays exponentially
fast. Consequently, the integral can be efficiently computed by using the Gauss–Laguerre quadrature. However, this method
cannot be applied to the case that ν is not a nonnegative integer and the transformed Fourier type integrals are complex.

For the integral


+∞

0 f (x)Jν(ωx) dx, asymptotic expansions have been given recently by several authors, one can refer
to [17–19] to obtain more details. Also, Wong [20] given an explicit expression for the error term associated the expansion
of the integral, from which an error bound can be obtained readily. For the numerical evaluation of this integral, as early
as in 1982, Wong [21] constructed a Gaussian quadrature by rewriting it as a linear combination of the integrals of Hankel
functions, which yields two line integrals with a positive weight function related to the modified Bessel function of the
second kind of order ν. Recently, Asheim and Huybrechs [22] also constructed a Gaussian rule with Bessel function as its
weight based on Gram–Schmidt orthogonalization. Unfortunately, the use of moments is numerically problematic in as
much as they give rise to severe ill-conditioning [23]. For other methods, we refer the readers to [24] for a more general
review.

In the present work, based on the following important identity [25]

Jν(z) =
1

(2πz)1/2


e

1
2


ν+ 1

2


π iW0,ν(2iz)+ e−

1
2


ν+ 1

2


π iW0,ν(−2iz)


, (1.2)

whereWκ,µ(x) denotes theWhittakerW function [26], and the similar idea to [16,27], we present the newmethods for both
integrals in (1.1) by using generalized Gauss–Laguerre quadrature and logarithmic Gauss–Laguerre quadrature [28], which
take into account of the asymptotic property of Whittaker W function as x → 0.

In three dimensions water-wave radiation problem [29], one often come across the numerical computation of oscillatory
Bessel Hilbert transform of the following form:

Φm
n (ρ, y) = −


+∞

0
kne−kyJm(kρ)

dk
k − K

, (1.3)

where ρ > 0. For more details, one can refer to [29].
In this paper, we are also concerned with the computation of oscillatory Bessel Hilbert transform

H+(f (x)Jν(ωx))(τ ) = −


+∞

0

f (x)
x − τ

Jν(ωx) dx, (1.4)

where 0 < τ < +∞. The asymptotics and numerical methods of this integral have been investigated in [30]. For the
computation of the integral, the authors make the following decomposition

H+(f (x)Jν(ωx))(τ ) =

 a

0

f (x)− f (τ )
x − τ

Jν(ωx) dx +


+∞

a

f (x)− f (τ )
x − τ

Jν(ωx) dx

+f (τ )
 a

0

Jν(ωx)
x − τ

dx + −


+∞

a

Jν(ωx)
x − τ

dx

, (1.5)

with 0 < a < τ . However, the choice of a is depended on τ , and when τ is close to the origin, the methods are infeasible.
In this work, we rewrite the integral (1.4) as

H+(f (x)Jν(ωx))(τ ) =


+∞

0

f (x)− f (τ )
x − τ

Jν(ωx) dx + f (τ )−


+∞

0

Jν(ωx)
x − τ

dx, (1.6)

where, the first integral can be evaluated by themethod for the integral I2[f ], the second integral can be computed by explicit
expression which will be given in Section 4.

This paper is organized as follows. In Section 2, we transform both integrals into the Fourier type, and construct some
proper Gaussian quadrature rules to evaluate these Fourier type integrals. In Section 3, we also construct an alternative
quadrature formula for the integrals with a logarithmic singularity. Error analysis is presented in Section 4, and numerical
examples are also given to show the accuracy and efficiency of the presented methods. In Section 5, we apply methods
presented in Section 4 to the computation of highly oscillatory Bessel Hilbert transforms, based on the fast computation of
the integral

−


+∞

0

Jν(ωx)
x − τ

dx.

2. Numerical methods for the integrals in (1.1)

In this section, we study the numerical methods for the integrals in (1.1). Throughout the paper, we do not distinguish
the different constants C and R, and let log(z) = log(|z|)+ i arg(z) denote the principal value of the logarithm.
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